
CSci 5271
Introduction to Computer Security
Low-level attacks and defenses

(combined lecture)
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Shellcode techniques

Exploiting other vulnerabilities

Announcements intermission

Return address protections

ASLR and counterattacks

W�X (DEP)

Basic definition

Shellcode: attacker supplied instructions
implementing malicious functionality

Name comes from example of starting
a shell

Often requires attention to
machine-language encoding

Classic execve /bin/sh

execve(fname, argv, envp)

system call

Specialized syscall calling conventions

Omit unneeded arguments

Doable in under 25 bytes for Linux/x86

Avoiding zero bytes

Common requirement for shellcode in C
string

Analogy: broken 0 key on keyboard

May occur in other parts of encoding
as well

More restrictions

No newlines

Only printable characters

Only alphanumeric characters

“English Shellcode” (CCS’09)



Transformations

Fold case, escapes, Latin1 to Unicode,
etc.

Invariant: unchanged by transformation

Pre-image: becomes shellcode only
after transformation

Multi-stage approach

Initially executable portion unpacks rest
from another format

Improves efficiency in restricted
environments

But self-modifying code has pitfalls

NOP sleds

Goal: make the shellcode an easier
target to hit
Long sequence of no-op instructions,
real shellcode at the end

x86: 0x90 0x90 0x90 0x90 0x90
. . . shellcode

Where to put shellcode?

In overflowed buffer, if big enough

Anywhere else you can get it
Nice to have: predictable location

Convenient choice of Unix local
exploits:

Where to put shellcode?

Environment variables

Code reuse

If can’t get your own shellcode, use
existing code
Classic example: system
implementation in C library

“Return to libc” attack

More variations on this later



Outline

Shellcode techniques

Exploiting other vulnerabilities

Announcements intermission

Return address protections

ASLR and counterattacks

W�X (DEP)

Non-control data overwrite

Overwrite other security-sensitive data

No change to program control flow

Set user ID to 0, set permissions to all,
etc.

Heap meta-data

Boundary tags similar to doubly-linked
list

Overwritten on heap overflow

Arbitrary write triggered on free

Simple version stopped by sanity
checks

Heap meta-data

Use after free

Write to new object overwrites old, or
vice-versa

Key issue is what heap object is
reused for

Influence by controlling other heap
operations

Integer overflows

Easiest to use: overflow in small (8-,
16-bit) value, or only overflowed value
used
2GB write in 100 byte buffer

Find some other way to make it stop

Arbitrary single overwrite
Use math to figure out overflowing value



Null pointer dereference

Add offset to make a predictable
pointer

On Windows, interesting address start low

Allocate data on the zero page
Most common in user-space to kernel
attacks
Read more dangerous than a write

Format string attack

Attacker-controlled format: little
interpreter
Step one: add extra integer specifiers,
dump stack

Already useful for information disclosure

Format string attack layout Format string attack layout

Format string attack: overwrite

%n specifier: store number of chars
written so far to pointer arg

Advance format arg pointer to other
attacker-controlled data

Control number of chars written with
padding

On x86, use unaligned stores to create
pointer

Outline

Shellcode techniques

Exploiting other vulnerabilities

Announcements intermission

Return address protections

ASLR and counterattacks

W�X (DEP)



Readings reminders

Lectures are a bit behind, but keeping
on reading schedule is still a good idea

Relevant for today: attack techniques
under ASLR

For academic (ACM) papers, use
campus/proxy downloads

Outline

Shellcode techniques

Exploiting other vulnerabilities

Announcements intermission

Return address protections

ASLR and counterattacks

W�X (DEP)

Canary in the coal mine

Photo credit: Fir0002 CC-BY-SA

Adjacent canary idea

Terminator canary

Value hard to reproduce because it
would tell the copy to stop
StackGuard: 0x00 0D 0A FF

0: String functions
newline: fgets(), etc.
-1: getc()
carriage return: similar to newline?

Doesn’t stop: memcpy, custom loops

Random canary

Can’t reproduce because attacker can’t
guess

For efficiency, usually one per execution

Ineffective if disclosed



XOR canary

Want to protect against non-sequential
overwrites

XOR return address with value c at
entry

XOR again with c before return

Standard choice for c: see random
canary

Further refinements

More flexible to do earlier in compiler

Rearrange buffers after other variables
Reduce chance of non-control overwrite

Skip canaries for functions with only
small variables

Who has an overflow bug in an 8-byte
array?

What’s usually not protected?

Backwards overflows

Function pointers

Adjacent structure fields

Adjacent static data objects

Where to keep canary value

Fast to access

Buggy code/attacker can’t read or write

Linux/x86: %gs:0x14

Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes
overwritten

Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes
overwritten

ANRY BNRY CNRY DNRY ENRY FNRY

search 232 ! search 4 � 28



Shadow return stack

Suppose you have a safe place to store
the canary

Why not just store the return address
there?

Needs to be a separate stack

Ultimate return address protection

Outline

Shellcode techniques

Exploiting other vulnerabilities

Announcements intermission

Return address protections

ASLR and counterattacks

W�X (DEP)

Basic idea

“Address Space Layout Randomization”

Move memory areas around randomly
so attackers can’t predict addresses
Keep internal structure unchanged

E.g., whole stack moves together

Code and data locations

Execution of code depends on memory
location
E.g., on 32-bit x86:

Direct jumps are relative
Function pointers are absolute
Data must be absolute

Relocation (Windows)

Extension of technique already used in
compilation

Keep table of absolute addresses,
instructions on how to update

Disadvantage: code modifications take
time on load, prevent sharing

PIC/PIE (GNU/Linux)

“Position-Independent Code /
Executable”

Keep code unchanged, use register to
point to data area

Disadvantage: code complexity, register
pressure hurt performance



What’s not covered

Main executable (Linux 32-bit PIC)

Incompatible DLLs (Windows)

Relative locations within a module/area

Entropy limitations

Intuitively, entropy measures amount of
randomness, in bits

Random 32-bit int: 32 bits of entropy

ASLR page aligned, so at most
32- 12 = 20 bits of entropy

Other constraints further reduce
possibilities

Leakage limitations

If an attacker learns the randomized
base address, can reconstruct other
locations

Any stack address ! stack
unprotected, etc.

GOT hijack (Müller)

Main program fixed, libc randomized

PLT in main program used to call libc

Rewire PLT to call attacker’s favorite
libc functions

E.g., turn printf into system

GOT hijack (Müller)

printf@plt: jmp *0x8049678

...

system@plt: jmp *0x804967c

...

0x8049678: <addr of printf in libc>

0x804967c: <addr of system in libc>

ret2pop (Müller)

Take advantage of shellcode pointer
already present on stack
Rewrite intervening stack to treat the
shellcode pointer like a return address

A long sequence of chained returns, one
pop



ret2pop (Müller) Outline

Shellcode techniques

Exploiting other vulnerabilities

Announcements intermission

Return address protections

ASLR and counterattacks

W�X (DEP)

Basic idea

Traditional shellcode must go in a
memory area that is

writable, so the shellcode can be inserted
executable, so the shellcode can be
executed

But benign code usually does not need
this combination

W xor X, really :(W ^ X)

Non-writable code, X! :W

E.g., read-only .text section

Has been standard for a while,
especially on Unix

Lets OS efficiently share code with
multiple program instances

Non-executable data, W ! :X

Prohibit execution of static data, stack,
heap
Not a problem for most programs

Incompatible with some GCC features no
one uses
Non-executable stack opt-in on Linux, but
now near-universal

Implementing W � X

Page protection implemented by CPU
Some architectures (e.g. SPARC) long
supported W � X

x86 historically did not
One bit controls both read and execute
Partial stop-gap “code segment limit”

Eventual obvious solution: add new bit
NX (AMD), XD (Intel), XN (ARM)



One important exception

Remaining important use of
self-modifying code: just-in-time (JIT)
compilers

E.g., all modern JavaScript engines

Allow code to re-enable execution
per-block

mprotect, VirtualProtect
Now a favorite target of attackers

Counterattack: code reuse

Attacker can’t execute new code

So, take advantage of instructions
already in binary

There are usually a lot of them

And no need to obey original structure

Classic return-to-libc (1997)

Overwrite stack with copies of:
Pointer to libc’s system function
Pointer to "/bin/sh" string (also in libc)

The system function is especially
convenient

Distinctive feature: return to entry point

Chained return-to-libc

Shellcode often wants a sequence of
actions, e.g.

Restore privileges
Allow execution of memory area
Overwrite system file, etc.

Can put multiple fake frames on the
stack

Basic idea present in 1997, further
refinements

Beyond return-to-libc

Can we do more? Oh, yes.

Classic academic approach: what’s the
most we could ask for?

Here: “Turing completeness”

How to do it: reading for Thursday


