CSci 5271
Introduction to Computer Security
Day 3: Low-level vulnerabilities

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Vulnerabilities in OS interaction

Race conditions

) Two actions in parallel; result depends
on which happens first

) Usually attacker racing with you
1. Write secret data to file

2. Restrict read permissions on file
©) Many other examples

Classic races: files in /tmp

) Temp filenames must already be unique

©) But "unguessable” is a stronger
requirement

©) Unsafe design (mktemp (3)): function to
return unused name

£) Must use 0_EXCL for real atomicity

TOCTTOU gaps

) Time-of-check (to) time-of-use races
1. Check it's OK to write to file
2. Write to file

) Attacker changes the file between
steps 1and 2

) Just get lucky, or use tricks to slow
you down

TOCTTOU example

int safe_open_file(char *path) {

int fd = -1;
struct stat s;
stat (path, &s)
if (!S_ISREG(s.st_mode))
error("only regular files allowed");
else fd = open(path, 0_RDONLY);
return fd;

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1, res;
struct stat s;
res = stat(path, &s)
if (res || !S_ISREG(s.st mode))
error("only regular files allowed");
else fd = open(path, 0 RDONLY);
return fd;

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1, res;
struct stat s;
res = stat(path, &s)
if (res || !'S_ISREG(s.st mode))
error("only regular files allowed");
else fd = open(path, 0 _RDONLY);
return fd;

Changing file references

©) With symbolic links
©) With hard links
©) With changing parent directories
) Avoid by instead using:
® £* functions that operate on fds

® *at functions that use an fd in place of
the CWD

Directory traversal with . .

) Program argument specifies file with
directory files

©) What about
files/../../../../etc/passwd?

Environment variables

) Can influence behavior in unexpected
ways
® PATH
® LD_LIBRARY_PATH
B IFS

I

) Also umask, resource limits, current
directory

IFS and why it's a problem

£ In Unix, splitting a command line into
words is the shell’s job
® String — argv array
mgrep a b cVSs. grep ’a b’ c
) Choice of separator characters (default
space, tab, newline) is configurable

©) Exploit system("/bin/uname")

Outline

Low-level view of memory

Overall layout (Linux 32-bit)

Detail: static code and data

Marte cap

.bss (zero initialized)

rw-

.data (initialized)

.rodata (constants)

r-X

.text (code)

Usually unused

0x08048000

OXFFFfffff
Kernel
use only
— = 0xcO000000
T Mainstack
grows|down
g
g
8 0x40000000
g | [Mainlheap
Static code + data
l 008048000
v Usually unused
Detail: heap
future [growth
the
"break" | | |
[‘ Unallocated
‘ || area
[Free \D\ : lj Medium objects

w/ boundary tags

=
[0}
[}

il \ [1

|| Small objects

\
[T]| bucketed by size

Detail: initial stack

\USER=smc

\DISPLAY=

C[gPATH=/bin:/usr/bin[o]
3 LANG=en_US [1041686[\0]

i

c\:etc//' sue[\l/ tmp[o] [pa}

Hto 16 bytes|

:\ 409

g

1171792 15:[1] 6:

0

[NE

O

NULL

==

future|growth

OXbfffffff
Environment/
AUXYV strings

argv strings

auxv

environment

argv

Example stack frame

"top" of
stack

%esp____,

local
char{8]

]

12 (%ebp)

8(%ebp)

4 (%ebp)
l«— %ebp

! |-4(%ebp)

-8(%ebp)

-16(%ebp)

Outline

Logistics announcements

HAI virtual machines

©) Ubuntu 16.04 server, hosted on CSE

Labs
m 64-bit kernel but 32-bit BCMTA, gcc
-m32

) One VM per group (up to 2 students)

) For allocation, send group list to Aditya
pakki001@umn. edu

©) Don't put off until the last minute

Other parts of HAI

) Instructions will be on the Assignments
area of course web page

©) But BCMTA is not ready yet, so first
due date will be delayed

) Nothing due before next Wednesday, no
hidden vulnerability before next Friday

Exercise set 1

) Available on website

) Due Wednesday, February 13th, on
Canvas

©) Groups of 1-2, turn in one copy

Canvas, discussions

) Canvas page started, will use for
assignment turn-in

©) Online discussions, including for group
formation

) For spoiler questions, email both me
and the TA, keep CCd

Finding project topics

) Pre-proposal due 2/6 (one week from
Wednesday)

©) Don't skimp on topic selection:
important to success

) Conference papers linked from class
site

More on choosing topics

) Can't: wait to see what part of class

you like best
m But feel free to look ahead

©) Think about your group’s skills
® Also: available hardware/software
©) Think about where to find novelty
) Topic changes allowed, but will set you
back

Outline

Basic memory-safety problems

Stack frame overflow

12 (%ebp)
" |8(%ebp)

091 4 (ssebp)

F—
an
a2z Bl
3

l«—— %ebp
U%est | -4 (%ebp)

-8(%ebp)

“top” of har{8]
stack

[0] |-16(%ebp)

%esp.

Overwriting adjacent objects

) Forward or backward on stack
® Other local variables, arguments

) Fields within a structure
) Global variables
) Other heap objects

Overwriting metadata

) On stack:

® Return address
® Saved registers, incl. frame pointer

) On heap:
® Size and location of adjacent blocks

Double free

£) Passing the same pointer value to
free more than once

) More dangerous the more other heap
operations occur in between

Use after free

) AKA use of a dangling pointer
©) Could overwrite heap metadata
) Or, access data with confused type

Outline

Where overflows come from

Library funcs: unusable

£) gets writes unlimited data into supplied
buffer

) No way to use safely (unless stdin
trusted)

©) Finally removed in C1l standard

Library funcs: dangerous

) Big three unchecked string functions

® strcpy(dest, src)
® strcat(dest, src)
® sprintf (buf, fmt, ...)

©) Must know lengths in advance to use
safely (complicated for sprintf)

©) Similar pattern in other funcs returning
a string

Library funcs: bounded

©) Just add "n":

® stroncpy(dest, src, n)

® strncat(dest, src, n)

® snprintf (buf, size, fmt, ...)
) Tricky points:

m Buffer size vs. max characters to write

® Failing to terminate
® strncpy zero-fill

More library attempts

) OpenBSD strlcpy, strlcat

® Easier to use safely than "n” versions
® Non-standard, but widely copied

©) Microsoft-pushed strcpy s, etc.

® Now standardized in C11, but not in glibc
® Runtime checks that abort

) Compute size and use memcpy
£) C+ std: :string, glib, etc.

Still a problem: truncation

) Unexpectedly dropping characters from
the end of strings may still be a
vulnerability

0 Eqg, if attacker pads paths with
///////or/./.]./.

©) Avoiding length limits is best, if
implemented correctly

Off-by-one bugs

£) strlen does not include the terminator
£) Comparison with < vs. <=
£) Length vs. last index

) x++ VS, ++x

Even more buffer/size mistakes

) Inconsistent code changes (use
sizeof)

) Misuse of sizeof (e.g., on pointer)

) Bytes vs. wide chars (UCS-2) vs.
multibyte chars (UTF-8)

) OS length limits (or lack thereof)

Other array problems

£) Missing/wrong bounds check

® One unsigned comparison suffices
® Two signed comparisons needed

) Beware of clever loops
® Premature optimization

Outline

More problems

Integer overflow

£) Fixed size result # math result

©) Sum of two positive ints negative or
less than addend

) Also multiplication, left shift, etc.
©) Negation of most-negative value
©) (low + high)/2

Integer overflow example

int n = read_int();
obj *p = malloc(n * sizeof(obj));
for (1 = 0; i < m; i++)

pli] = read_obj();

Signed and unsigned

) Unsigned gives more range for, eg,
size_t

£) At machine level, many but not all
operations are the same

©) Most important difference: ordering

©) In C, signed overflow is undefined
behavior

Mixing integer sizes

) Complicated rules for implicit
conversions
® Also includes signed vs. unsigned
) Generally, convert before operation:
mEg, 1ULL << 63
) Sign-extend vs. zero-extend
® char ¢ = Oxff; (int)c

Null pointers

©) Vanilla null dereference is usually
non-exploitable (just a DoS)

©) But not if there could be an offset (e.q.,
field of struct)

©) And not in the kernel if an untrusted
user has allocated the zero page

Undefined behavior

) C standard “undefined behavior”:
anything could happen

) Can be unexpectedly bad for security

) Most common problem: compiler

optimizes assuming undefined behavior
cannot happen

Linux kernel example

struct sock *sk = tun->sk;
/] ...
if (!'tun)
return POLLERR;
// more uses of tun and sk

Format strings

0 printf format strings are a little
interpreter

) printf (fmt) with untrusted fmt lets
the attacker program it
) Allows:

® Dumping stack contents
® Denial of service
® Arbitrary memory modifications!

Next time

) Exploitation techniques for these
vulnerabilities

