
Computer Science 5271
Fall 2013
Midterm exam (solutions)
October 14th, 2013
Time Limit: 75 Minutes, 1:00pm-2:15pm

• This solution set contains 11 pages (including this cover page) and 5 questions. Once we tell
you to start, please check that no pages are missing.

• Before starting the exam, you can fill out your name and other information of this page, but
don’t open the exam until you are directed to start. Don’t put any of your answers on this
page.

• You may use any textbooks, notes, or printouts you wish during the exam, but you may not
use any electronic device: no calculators, smart phones, laptops, etc. You may ask clarifying
questions of the instructor or TAs, but no communication with other students is allowed
during the exam.

• Please read all questions carefully before answering them. Remember, we can only grade
what you write on the exam, so it’s in your interest to show your work and explain your
thinking.

• By signing below you certify that you agree to follow the rules of the exam, and that the
answers on this exam are your own work only.

The exam will end promptly at 2:15pm. Good luck!

Your name (print):

Your UMN X.500 (AKA CSELabs login, email): @umn.edu

Number of rows ahead of you: Number of seats to your left:

Sign and date:

Question Points Score

1 15

2 20

3 20

4 25

5 20

Total: 100

Computer Science 5271 Midterm exam (solutions) - Page 2 of 11 October 14th, 2013

1. Your consulting firm Tesseract Security Solutions had been hired to configure a multilevel-
secure classification and access control system for the intelligence agency of a small, landlocked
nation. You and a coworker are designing a lattice model for the project. The nation has three
levels of classification, named “Unclassified”, “Secret”, and “Top Secret” and abbreviated U,
S, and TS respectively. There are also three specialized compartments for clandestine projects
codenamed APPLEBUTTER, BLINDSIDE, and CRAYOLA (abbreviated A, B, and C). A
co-worker got most of the way through drawing a diagram of the lattice, but then some of his
work was lost when he spilled coffee on the paper. (The diagram is on the next page, and
rotated 90 degrees to fit on the page.)

(a) (5 points) Fill in the correct labels on the five points in the lattice which are missing labels
(shown with a dashed outline).

(b) (5 points) Carol is an intelligence analyst cleared to the Secret level, with access to the
APPLEBUTTER and CRAYOLA compartments; the corresponding point in the lattice
is shown with a bold outline. Label with an “R” all the points in the lattice from which
Carol can read information under a BLP policy, and label with a “W” all the points she
can write to.

(c) (5 points) The intelligence agency is considering starting five new projects to be code-
named DANCEHALL, EXCELSIOR, FACEPAINT, GALOSHES, and HEXDUMP. If you
add new compartments for these new projects in addition to the existing ones, how many
total points will be in the resulting lattice?

Solution: 3 · 23+5 = 3 · 28 = 3 · 256 = 768

There are three levels, and the number of points on each level is equal to the number of
subsets of the set {A,B,C,D,E, F,G,H}.
In the old lattice, there are 8 points on each level. If you hadn’t noticed that 8 = 23,
consider what happens when you add DANCEHALL: for every point in the old lattice,
there is a copy of that point in the new lattice, and also a copy of that point with //D
added. Continuing this pattern the number of points in the lattice doubles with every new
compartment added.

It’s also possible, though more cumbersome, to count the points based on how many com-
partments they’re in:

3 ·
((

8

0

)
+

(
8

1

)
+

(
8

2

)
+

(
8

3

)
+

(
8

4

)
+

(
8

5

)
+

(
8

6

)
+

(
8

7

)
+

(
8

8

))
= 3 · (1 + 8 + 28 + 56 + 70 + 56 + 28 + 8 + 1) = 3 · 256 = 768

Page 2

Computer Science 5271 Midterm exam (solutions) - Page 3 of 11 October 14th, 2013

Page 3

Computer Science 5271 Midterm exam (solutions) - Page 4 of 11 October 14th, 2013

2. (20 points) Matching definitions and concepts. Fill in each blank with the letter of the corre-
sponding answer. Each answer is used exactly once.

(a) N Situation whose result depends on which of two parallel actions happens first

(b) Q Attacker-supplied instructions implementing malicious functionality

(c) R A component whose failure could violate your security

(d) K Code that can run correctly at any memory location

(e) F Unintended means of conveying information

(f) M System call used for system call interposition

(g) B A value whose overwrite signals an attack

(h) D System call enabling a restricted file system

(i) E Secret data should not flow to public sinks

(j) L The power to take security-relevant actions

(k) O Behaving less safely because of a safety mechanism

(l) S What marketing means when they say “trusted”

(m) T Capable of simulating any program

(n) C Security token that both designates a resource and provides authority to access it

(o) J Long instruction sequence leading to shellcode

(p) P Random but not secret value added to a password hash

(q) A Lack of connection between two networks

(r) G Frame pointer

(s) H Untrusted data should not flow to critical sinks

(t) I Partial order with t and u

A. Air gap B. Canary C. Capability D. chroot E. Confidentiality F. Covert
channel G. %ebp H. Integrity I. Lattice J. NOP sled K. PIC/PIE L. Privilege
M. ptrace N. Race condition O. Risk compensation P. Salt Q. Shellcode
R. Trusted S. Trustworthy T. Turing complete

Page 4

Computer Science 5271 Midterm exam (solutions) - Page 5 of 11 October 14th, 2013

3. (20 points) Multiple choice. Circle the letter of the correct answer.

(a) This biometric authentication technique has low error rates when performed by a com-
puter, but can’t be checked by a person:

A. Iris codes B. Fingernail length C. Signature matching D. Fingerprints
E. Voice recognition

This is mentioned in the discussion in Anderson.

(b) What’s “common” about the Common Criteria?

A. Every kind of product is evaluated against the same “protection profile”.

B. Anyone can perform the certification, without special government approval.

C. The certification applies to devices used in everyday civilian life, rather than in
government or the military.

D. A single certification is recognized by the governments of many coun-
tries.

E. A single certification can be used for products from different vendors.

Mentioned both in class and in Anderson.

(c) Suppose a biometric authentication system has an equal error rate of 5%. Which of these
is not also the case?

A. The system will always have a lower false-positive rate than allowing
users based on a random coin flip with allow probability 5%.

B. If you configure the system to have less than 3% false negatives, the rate of false
positives is at least 5%.

C. There is no way to configure the system to simultaneously have no false negatives
and no false positives.

D. If you configure the system to have less than 5% false positives, the rate of false
negatives must be 5% or more.

E. By setting the confidence threshold appropriately, we can get false-positive and
false-negative rates that are both 5%.

E is just the definition of the equal error rate. C is true whenever the EER is non-zero,
and is a general feature of biometrics. B and D both lead to contradictions with the EER
definition: for instance in B, if you could have 3% false negatives and 4% false positives,
the EER would be at most 4%. But for A, you can always give even a good system a high
false-positive rate by setting the confidence threshold appropriately.

(d) Which of these systems does not use primarily capabilities for access control?

A. The Joe-E programming language

B. The Caja programming language

C. The seL4 microkernel

D. The KeyKOS operating system

E. The SELinux operating system

Joe-E, Caja, and seL4 were mentioned as examples of capability systems in class. KeyKOS
was mention in the paper on capabilities. SELinux by contrast was mentioned as an ex-
ample of an MLS system.

Page 5

Computer Science 5271 Midterm exam (solutions) - Page 6 of 11 October 14th, 2013

(e) In the CFI paper, legal jump targets are identified by a special 32-bit value. Which special
property must that value have?

A. It must be a palindrome (same big-endian as little-endian)

B. It must not contain any 0 bytes

C. It must be greater than the largest code address

D. It must not be a legal x86 instruction

E. It must not appear elsewhere in the program code

Mentioned in lecture and in the CFI paper. As long as the value is unique, any of A-D
might be violated.

(f) Which one of these functions can never overflow a buffer?

A. strcpy B. sprintf C. printf D. strlcpy E. strncpy

strcpy and sprintf are classic sources of buffer overflows. strncpy and strlcpy try to
be safer by letting you specify the size of the buffers, but you could still have a problem if
you pass the wrong size. On the other hand printf doesn’t write to a user-supplied buffer
at all: its results go straight to the output. printf can have format string vulnerabilities,
but format string vulnerabilities aren’t buffer overflows.

(g) According to the C standard, which of these might be true of the execution of a program
with undefined behavior?

A. It could appear to run normally, but with some security checks bypassed

B. It could print an error message

C. It could terminate without an error message

D. It could have a segfault

E. All of the above

Mentioned in lecture.

(h) This pair of functions, mentioned in the StackGuard paper, have a behavior like a function
pointer that makes them valuable to code-injection attackers:

A. read/write

B. setjmp/longjmp

C. chmod/chown

D. printf/scanf

E. getuid/setuid

There’s a section about this in the StackGuard paper. longjmp buffers were also briefly
mentioned in class as targets for control-flow injection.

Page 6

Computer Science 5271 Midterm exam (solutions) - Page 7 of 11 October 14th, 2013

(i) In a system enforcing a W⊕X policy, which of the following areas could be executable?

A. The read-only data area

B. The BSS area (.bss)

C. The heap

D. The initialized data (.data) area

E. The stack

The most elegant way to answer this is to notice that the read-only data area is not writable,
which means that it’s okay for it to be executable under W⊕X. The other areas mentioned
are all writable, so they can’t be safely executable. In fact it’s common for the read-only
data section to have the same R-X permissions as the text (code) section, because the
read-only data section comes right after the code.

(j) Which of these equations does not have a solution, if the operations are performed using
32-bit unsigned ints?

A. x + 1 < x

B. 2 · x = 1

C. 13 · x = 10

D. 2 · x = 10

E. 2 · x < x

The solutions for C and D were straight out of Exercise Set 1; also D has a solution that
should be obvious. A and E are more examples of things that seem impossible that become
possible because of overflow: for A take x = 0xffffffff, and for E take x = 0x80000000.
On the other hand B is not possible because even with overflow, the result of multiplying
by 2 is always even. If you think about 2 · x as left shift, the new low-order bits are always
zero.

Page 7

Computer Science 5271 Midterm exam (solutions) - Page 8 of 11 October 14th, 2013

4. (25 points) Non-defensive programming. The following C function was not written defensively:
if it’s supplied with unusual input, various bad things can happen. There are two ways of
thinking about these problems: you can consider them coding mistakes in this function, or you
can consider them preconditions of this function that need to be documented so that the rest
of the program can use it safely.

Find and explain three such problems with this function. Pick the three most serious problems
you can find: we’re looking for the sorts of problems that could be exploitable if the arguments
to the function were controlled by an attacker (though you don’t need to construct such an
attack for this question).

For each problem we want four pieces of information. List the line number(s) on which the
problem occurs. Give a precondition, a description of the what property well-formed input
should have to avoid the problem. Describe the coding mistake and consequences: what did
the programmer do wrong (or at least non-defensively) and what bad outcome can occur?
Finally, describe how to fix the coding mistake.

1 struct piece { int row; int col; char *symbol; };

2 struct piece *pieces = 0;

3

4 struct square { char *description; /* ... */ };

5 struct square board[8][8];

6

7 /* Place a bunch of pieces on the board. */

8 int load_pieces(struct piece *p, int num_pieces) {

9 int i;

10 pieces = malloc(num_pieces * sizeof(struct piece));

11 if (!pieces) {

12 fprintf(stderr, "Allocation failed!\n");

13 return 0;

14 }

15 for (i = 0; i < num_pieces; i++) {

16 char buf[20];

17 int r = p[i].row, c = p[i].col;

18 if (r >= 8 || c >= 8) {

19 fprintf(stderr, "Position out of range!\n");

20 return 0;

21 }

22 sprintf(buf, "%d x %d: %s", r, c, p[i].symbol);

23 board[r][c].description = strdup(buf);

24 pieces[i] = p[i];

25 }

26 return 1; /* Success */

27 }

Page 8

Computer Science 5271 Midterm exam (solutions) - Page 9 of 11 October 14th, 2013

(a) Problem 1. Line number(s): 10, 24

Precondition:

Solution: num pieces should be small enough that it does not overflow when mul-
tiplied by sizeof(strict piece). Given that these pieces are filling up an 8 by 8
board, a tighter precondition like num pieces ≤ 64 would also be reasonable.

Coding mistake and consequences:

Solution: The multiplication on line 10 could overflow without checking. If this
happens, the array allocated for pieces can be smaller than the number of entries
copied into it on line 24, a buffer overflow.

How to fix:

Solution: Enforce a tighter precondition on num pieces, or abort if an overflow oc-
curs.

(b) Problem 2. Line number(s): 18, 23

Precondition:

Solution: The row and col fields of the supplied pieces should be non-negative.

Coding mistake and consequences:

Solution: The bounds check on line 18 checks the upper bound on r and c, but
fails to check the lower bound, perhaps because the programmer hadn’t noticed the
variables were signed. Thus any negative value for the row or column is allowed, but
will cause a value outside the array to be overwritten on line 23.

How to fix:

Solution: Add conditions r < 0 || c < 0 to the if statement on line 18.

(c) Problem 3. Line number(s): 16, 22

Precondition:

Solution: The symbol field of each piece should be a short string. For instance less
than 10 characters would be safe.

Coding mistake and consequences:

Solution: The code calls sprintf with a buffer that may not be big enough to hold
the generated string. If the symbol string is long (or if r and c are long negative
numbers, for that matter), the buffer buf will overflow.

How to fix:

Page 9

Computer Science 5271 Midterm exam (solutions) - Page 10 of 11 October 14th, 2013

Solution: Probably best is to use snprintf instead of sprintf, which won’t overflow
its buffer. You can also use a format specifier like %.10s to limit how much of the
symbol is included in the string, or make a copy of just the first few characters of the
symbol string.

5. (20 points) Return-oriented shellcoding. As part of a larger attack, you need to use ROP to
create some code to call the Linux mprotect system call and disable W⊕X protection on the
rest of your shellcode. In particular you’ve figured out that the call you want to make would
look like:

mprotect(stack_pointer - 10000, 20000, PROT_WRITE|PROT_EXEC);

if you could write it in C. (stack pointer can be the value of %esp at any point in the shellcode,
since the margin of 10000 bytes on either side is enough to take care of any minor variation.)
Looking up in the appropriate header files, you’ve also discovered that mprotect is system call
number 125, and that the numeric value of the protection flags is 2|4 = 6. According to the
Linux system call calling conventions, you need to put the system call number in %eax, put
the three arguments in the registers %ebx, %ecx, and %edx respectively, and then execute the
instruction int 0x80.

You’ve also found a number of useful-looking gadgets, which are shown on the right side of the
next page. Your job is to fill in the return-oriented program on the picture of the stack shown
on the left side of the next page, starting from the “top” of the stack at the bottom of the page.
Each space on the stack represents a 32-bit value. You can fill it in with a fixed number by
writing the number in the box, or you can make it a pointer to a gadget by writing the letter of
the gadget in the box. (When drawing these diagrams in the past we’ve drawn an arrow from
the box to the gadget, but letters should be easier to read.) You can use each gadget as many
or as few times as you would like: our solution uses all of them, some several times.

Hint: plan carefully the order in which you fill in the registers, since some operations can only
be done using certain registers for intermediate values.

It’s possible to achieve your goal using only the gadgets shown, and without using all the stack
spaces we’ve drawn for you. But if you can’t figure out how, you can earn partial credit with a
solution in which you invent new gadgets (write them below the ones we put there with their
own letters). But you’ll lose one point for each instruction in a new gadget you use.

We’ve written the x86 instructions in AT&T syntax, so the result operands are on the end. For
instance mov x, y is like y = x, and add x, y is like y += x.

Page 10

Computer Science 5271 Midterm exam (solutions) - Page 11 of 11 October 14th, 2013

Page 11

