
1

CSCI 5105

Instructor: Abhishek Chandra

Today

 Communication in Distributed Systems

 Overview

 Types

 Remote Procedure Calls (RPC)

 Remote Method Invocation (RMI)

2

Communication

 How do program modules/processes
communicate on a single machine?

3

Communication in Distributed Systems

 “Distributed” processes

 Located on different machines

 Need communication mechanisms

 Goal: Hide distributed nature as far as possible

4

2

Communication in Distributed Systems

 Networking primitives and protocols (e.g.:
TCP/IP)

 Advanced communication models: Built on
networking primitives

 Remote Procedure Calls (RPC)

 Remote Method Invocation (RMI)

 Messages

 Multicast

5

Types of Communication

 Defined by two main properties:

 Persistence

 Synchronization

6

7

Persistence

 Persistent communication

 Messages are stored until receiver is ready

 Sender/receiver don’t have to be up at the same
time

 Transient communication

 Message is stored only so long as both
sending/receiving applications are executing

 Discard message if it can’t be delivered to receiver

8

Synchronization

 Synchronous communication

 Sender blocks until message is delivered to receiver

 Variant: block until receiver processes the message

 Asynchronous communication

 Sender continues immediately after it has submitted
the message

 Several combinations of persistence and
synchronization

3

9

Persistence-Synchronization Combinations

Persistent Asynchronous

communication

Persistent Synchronous

communication

Example: Email Example: Message Queuing

10

Transient Asynchronous

communication

Receipt-based Transient

Synchronous Communication

Persistence-Synchronization Combinations

Example: UDP, One-way RPC Example: Message-passing

11

Response-based Transient

Synchronous Communication

Delivery-based Transient

Synchronous Communication

Persistence-Synchronization Combinations

Example: RPC, RMI Example: Asynchronous RPC

Remote Procedure Calls (RPC)

 Goal: Make distributed computation look like
centralized computation

 Idea: Allow processes to call procedures on
other machines

 Make it appear like normal procedure calls

12

4

Local Procedure Calls

13

Stack Pointer

Stack Pointer

foo(i, buf)

i

buf

Return address,
Local vars

RPC Operation

 Challenges:

 Hide details of communication

 Pass parameters transparently

 Stubs

 Hide communication details

 Client and server stubs

 Marshalling

 Flattening and parameter passing

14

Stubs

 Code that communicates with the remote side

 Client stub:

 Converts function call to remote communication

 Passes parameters to server machine

 Receives results

 Server stub:

 Receives parameters and request from client

 Calls the desired server function

 Returns results to client

15

Basic RPC Operation

16

Client Stub

Client
Code

Server Stub

Server
Code

RPC Client RPC Server

5

Parameter Passing: Local Procedures

 Pass-by-value

 Original variable is not modified

 E.g.: integers, chars

 Pass-by-reference

 Passing a pointer

 Value may be changed

 E.g.: Arrays

 Pass-by-copy/restore

 Copy is modified and overwritten to the original

 E.g.: in-out parameters in Ada

17

Parameter Passing: RPC

 Pass-by-value

 Send the value in standard format

 Pass-by-reference

 Can we pass pointers?

 What about complex data structures (linked
lists, trees, graphs)?

18

Marshalling

 Converting parameters into a byte stream

 Problems:

 Heterogeneous data formats: Big-endian vs.
little-endian

 Type of parameter passing: by-value vs. by-
reference

19

Heterogeneous Data Formats

 Use a standard data format

 Examples: Network byte order, XDR (Extended
Data Representation)

 Decide on a protocol for parameter ordering

20

6

Stub Generation

 Most stubs are similar in functionality

 Handle communication and marshalling

 Differences are in the main server-client code

 Application needs to know only stub interface

 Interface Definition Language (IDL)

 Allows interface specification

 IDL compiler generates the stubs automatically

21

Binding

 How does the client stub find the server stub?

 Needs to know remote IP address/port no.

 Port mapper

 Daemon on server machine maintaining server
bindings

 Listens on a well-known port

 Server stub registers its port no. and service
name with portmapper

 Client gets this binding by querying portmapper

 Server’s IP address can be obtained from a
directory service

22

23

Synchronous RPC

 RPC Performed in a synchronous manner

 Client blocks until results come back

 What if client wants to do something else?

24

RPC Variants

 Asynchronous RPC

 Server sends ACK as soon as request is received

 Executes procedure later

 Deferred synchronous RPC

 Use two asynchronous RPCs

 Server sends reply via second asynchronous RPC

 Callback to the client

 One-way RPC

 Client does not even wait for an ACK from the
server

7

Multicast RPC

 RPC sent to multiple servers

 Could use multiple concurrent one-way or
asynchronous RPCs

 Why use multicast RPC?

 How to handle responses?

 First one or majority response

 Aggregate multiple responses

25 26

Remote Method Invocation (RMI)

 RPCs applied to distributed objects

 Class: object-oriented abstraction

 Object: instance of class

 Encapsulates data

 Exports methods: operations on data

 Separation between interface and implementation

27

Distributed Objects

 Object resides on one machine, interfaces reside
on other machines

 Remote object: State on different machine

 Local object: State on the same machine

 RMIs allow invoking methods of remote objects

 Use proxies, skeletons, binding

 Allow passing of object references as parameters

28

Basic RMI Operation

Proxy

Client
Object

Skeleton

Server
Object

RMI Client RMI Server

8

29

Proxies and Skeletons

 Proxy: client stub

 Maintains server ID, endpoint, object ID

 Does parameter marshalling

 In practice, can be downloaded/constructed on
the fly

 Skeleton: server stub

 Does demarshalling and passes parameters to
server

 Sends result to proxy

30

 Loading a proxy in client address space

 Implicit binding:

 Bound automatically on object reference
resolution

 Explicit binding:

 Client has to first bind object

 Call method after binding

Binding a Client to an Object

31

Parameter Passing

 Less restrictive than RPCs
 Supports system-wide object references

 Copy local objects, pass references of remote objects

