
1

CSCI 5105

Instructor: Abhishek Chandra

Today

 Communication in Distributed Systems

 Overview

 Types

 Remote Procedure Calls (RPC)

 Remote Method Invocation (RMI)

2

Communication

 How do program modules/processes
communicate on a single machine?

3

Communication in Distributed Systems

 “Distributed” processes

 Located on different machines

 Need communication mechanisms

 Goal: Hide distributed nature as far as possible

4

2

Communication in Distributed Systems

 Networking primitives and protocols (e.g.:
TCP/IP)

 Advanced communication models: Built on
networking primitives

 Remote Procedure Calls (RPC)

 Remote Method Invocation (RMI)

 Messages

 Multicast

5

Types of Communication

 Defined by two main properties:

 Persistence

 Synchronization

6

7

Persistence

 Persistent communication

 Messages are stored until receiver is ready

 Sender/receiver don’t have to be up at the same
time

 Transient communication

 Message is stored only so long as both
sending/receiving applications are executing

 Discard message if it can’t be delivered to receiver

8

Synchronization

 Synchronous communication

 Sender blocks until message is delivered to receiver

 Variant: block until receiver processes the message

 Asynchronous communication

 Sender continues immediately after it has submitted
the message

 Several combinations of persistence and
synchronization

3

9

Persistence-Synchronization Combinations

Persistent Asynchronous

communication

Persistent Synchronous

communication

Example: Email Example: Message Queuing

10

Transient Asynchronous

communication

Receipt-based Transient

Synchronous Communication

Persistence-Synchronization Combinations

Example: UDP, One-way RPC Example: Message-passing

11

Response-based Transient

Synchronous Communication

Delivery-based Transient

Synchronous Communication

Persistence-Synchronization Combinations

Example: RPC, RMI Example: Asynchronous RPC

Remote Procedure Calls (RPC)

 Goal: Make distributed computation look like
centralized computation

 Idea: Allow processes to call procedures on
other machines

 Make it appear like normal procedure calls

12

4

Local Procedure Calls

13

Stack Pointer

Stack Pointer

foo(i, buf)

i

buf

Return address,
Local vars

RPC Operation

 Challenges:

 Hide details of communication

 Pass parameters transparently

 Stubs

 Hide communication details

 Client and server stubs

 Marshalling

 Flattening and parameter passing

14

Stubs

 Code that communicates with the remote side

 Client stub:

 Converts function call to remote communication

 Passes parameters to server machine

 Receives results

 Server stub:

 Receives parameters and request from client

 Calls the desired server function

 Returns results to client

15

Basic RPC Operation

16

Client Stub

Client
Code

Server Stub

Server
Code

RPC Client RPC Server

5

Parameter Passing: Local Procedures

 Pass-by-value

 Original variable is not modified

 E.g.: integers, chars

 Pass-by-reference

 Passing a pointer

 Value may be changed

 E.g.: Arrays

 Pass-by-copy/restore

 Copy is modified and overwritten to the original

 E.g.: in-out parameters in Ada

17

Parameter Passing: RPC

 Pass-by-value

 Send the value in standard format

 Pass-by-reference

 Can we pass pointers?

 What about complex data structures (linked
lists, trees, graphs)?

18

Marshalling

 Converting parameters into a byte stream

 Problems:

 Heterogeneous data formats: Big-endian vs.
little-endian

 Type of parameter passing: by-value vs. by-
reference

19

Heterogeneous Data Formats

 Use a standard data format

 Examples: Network byte order, XDR (Extended
Data Representation)

 Decide on a protocol for parameter ordering

20

6

Stub Generation

 Most stubs are similar in functionality

 Handle communication and marshalling

 Differences are in the main server-client code

 Application needs to know only stub interface

 Interface Definition Language (IDL)

 Allows interface specification

 IDL compiler generates the stubs automatically

21

Binding

 How does the client stub find the server stub?

 Needs to know remote IP address/port no.

 Port mapper

 Daemon on server machine maintaining server
bindings

 Listens on a well-known port

 Server stub registers its port no. and service
name with portmapper

 Client gets this binding by querying portmapper

 Server’s IP address can be obtained from a
directory service

22

23

Synchronous RPC

 RPC Performed in a synchronous manner

 Client blocks until results come back

 What if client wants to do something else?

24

RPC Variants

 Asynchronous RPC

 Server sends ACK as soon as request is received

 Executes procedure later

 Deferred synchronous RPC

 Use two asynchronous RPCs

 Server sends reply via second asynchronous RPC

 Callback to the client

 One-way RPC

 Client does not even wait for an ACK from the
server

7

Multicast RPC

 RPC sent to multiple servers

 Could use multiple concurrent one-way or
asynchronous RPCs

 Why use multicast RPC?

 How to handle responses?

 First one or majority response

 Aggregate multiple responses

25 26

Remote Method Invocation (RMI)

 RPCs applied to distributed objects

 Class: object-oriented abstraction

 Object: instance of class

 Encapsulates data

 Exports methods: operations on data

 Separation between interface and implementation

27

Distributed Objects

 Object resides on one machine, interfaces reside
on other machines

 Remote object: State on different machine

 Local object: State on the same machine

 RMIs allow invoking methods of remote objects

 Use proxies, skeletons, binding

 Allow passing of object references as parameters

28

Basic RMI Operation

Proxy

Client
Object

Skeleton

Server
Object

RMI Client RMI Server

8

29

Proxies and Skeletons

 Proxy: client stub

 Maintains server ID, endpoint, object ID

 Does parameter marshalling

 In practice, can be downloaded/constructed on
the fly

 Skeleton: server stub

 Does demarshalling and passes parameters to
server

 Sends result to proxy

30

 Loading a proxy in client address space

 Implicit binding:

 Bound automatically on object reference
resolution

 Explicit binding:

 Client has to first bind object

 Call method after binding

Binding a Client to an Object

31

Parameter Passing

 Less restrictive than RPCs
 Supports system-wide object references

 Copy local objects, pass references of remote objects

