Today

= Communication in Distributed Systems
= Overview
= Types
CSCI 5105 = Remote Procedure Calls (RPC)
= Remote Method Invocation (RMI)

Instructor: Abhishek Chandra

Communication Communication in Distributed Systems
= How do program modules/processes = “Distributed” processes
communicate on a single machine? = Located on different machines

= Need communication mechanisms
= Goal: Hide distributed nature as far as possible




Communication in Distributed Systems

= Networking primitives and protocols (e.g.:
TCP/IP)
= Advanced communication models: Built on
networking primitives
= Remote Procedure Calls (RPC)
= Remote Method Invocation (RMI)
= Messages
= Multicast

Types of Communication

= Defined by two main properties:
= Persistence
= Synchronization

Persistence

= Persistent communication
= Messages are stored until receiver is ready
= Sender/receiver don't have to be up at the same
time
= Transient communication

= Message is stored only so long as both
sending/receiving applications are executing

= Discard message if it can't be delivered to receiver

Synchronization

= Synchronous communication
= Sender blocks until message is delivered to receiver
= Variant: block until receiver processes the message
= Asynchronous communication

= Sender continues immediately after it has submitted
the message

= Several combinations of persistence and
synchronization




Persistence-Synchronization Combinations

Persistent Asynchronous

Persistent Synchronous

communication communication
A sends message A sends message A stopped
and continues '”t f‘:rll’PEd and waits until accepted mnmg.se
—_ —_ T
A A f
Message is stored
L) at B's location for Accepted
Time later delivery Time
Y Ay N
IS — S i v
B starts and Bis not B starts and
Bis not receives running receives
running message message
(a) (b}
Example: Email Example: Message Queuing

Persistence-Synchronization Combinations

Transient Asynchronous
communication
A sends message
and continues.
—_—

A \ Message can be
\ _sentonly fBis

& running

1 Time
B receives
message

)

Example: UDP, One-way RPC

Receipt-based Transient
Synchronous Communication

Send request and wait
until received

A 4

Request ': F.ACK

is received . Time
B A‘f_ ,,,,,,,,,, >
Runmng; but” d_amz; Process

something else request

()

Example: Message-passing

Persistence-Synchronization Combinations

Delivery-based Transient
Synchronous Communication

Send request and wait until

accepted
A —
A
Request
is received Accepted
v Time

B — A »
Running, but doing Process
something else request

(e)

Example: Asynchronous RPC

Response-based Transient
Synchronous Communication

Send request
and wait for reply
A
A
Request Accepted
is received
v Time
B —=_ : >
Running, but doing Process
something else request

U]

Example: RPC, RMI

Remote Procedure Calls (RPC)

= Goal: Make distributed computation look like
centralized computation

= Idea: Allow processes to call procedures on

other machines

= Make it appear like normal procedure calls




Local Procedure Calls RPC Operation

foo(i, buf) = Challenges:
= Hide details of communication
. = Pass parameters transparently
buF Stack Pointer
1 = Stubs
Retur address, » Hide communication details
Stack Pointer = Client and server stubs
= Marshalling
= Flattening and parameter passing
Stubs Basic RPC Operation
= Code that communicates with the remote side RPC Client RPC Server
= Client stub: -
= Converts function call to remote communication ((::I:Je(:jrg Scegéir

= Passes parameters to server machine
= Receives results

= Server stub: Client Stub Server Stub

= Receives parameters and request from client
= Calls the desired server function

= Returns results to client




Parameter Passing: Local Procedures

= Pass-by-value
= Original variable is not modified
= E.g.: integers, chars
= Pass-by-reference
= Passing a pointer
= Value may be changed
= E.g.: Arrays
= Pass-by-copy/restore
= Copy is modified and overwritten to the original
= E.g.: in-out parameters in Ada

Parameter Passing: RPC

= Pass-by-value
= Send the value in standard format

= Pass-by-reference
= Can we pass pointers?

= What about complex data structures (linked
lists, trees, graphs)?

Marshalling

= Converting parameters into a byte stream

= Problems:
= Heterogeneous data formats: Big-endian vs.
little-endian

= Type of parameter passing: by-value vs. by-
reference

Heterogeneous Data Formats

= Use a standard data format

= Examples: Network byte order, XDR (Extended
Data Representation)

= Decide on a protocol for parameter ordering




Stub Generation

= Most stubs are similar in functionality

= Handle communication and marshalling

= Differences are in the main server-client code
= Application needs to know only stub interface
= Interface Definition Language (IDL)

= Allows interface specification

= IDL compiler generates the stubs automatically

Binding
= How does the client stub find the server stub?
= Needs to know remote IP address/port no.
= Port mapper
= Daemon on server machine maintaining server
bindings
= Listens on a well-known port
= Server stub registers its port no. and service
name with portmapper
= Client gets this binding by querying portmapper
= Server's IP address can be obtained from a
directory service

Synchronous RPC

= RPC Performed in a synchronous manner
= Client blocks until results come back

= What if client wants to do something else?

RPC Variants

= Asynchronous RPC
= Server sends ACK as soon as request is received
= Executes procedure later

= Deferred synchronous RPC
= Use two asynchronous RPCs
= Server sends reply via second asynchronous RPC
= Callback to the client

= One-way RPC

= Client does not even wait for an ACK from the
server




Multicast RPC

= RPC sent to multiple servers

= Could use multiple concurrent one-way or
asynchronous RPCs

= Why use multicast RPC?

= How to handle responses?
= First one or majority response
= Aggregate multiple responses

Remote Method Invocation (RMI)

= RPCs applied to distributed objects
= Class: object-oriented abstraction
= Object: instance of class
= Encapsulates data
= Exports methods: operations on data
= Separation between interface and implementation

Distributed Objects

= Object resides on one machine, interfaces reside
on other machines

= Remote object: State on different machine

= Local object: State on the same machine

= RMIs allow invoking methods of remote objects
= Use proxies, skeletons, binding
= Allow passing of object references as parameters

Basic RMI Operation

RMI Client RMI Server
Client Server
Object 4%'7
Proxy Skeleton




Proxies and Skeletons

= Proxy: client stub
= Maintains server ID, endpoint, object ID
= Does parameter marshalling
= In practice, can be downloaded/constructed on
the fly
= Skeleton: server stub
= Does demarshalling and passes parameters to
server
= Sends result to proxy

Binding a Client to an Object

= Loading a proxy in client address space
= Implicit binding:
= Bound automatically on object reference
resolution
= Explicit binding:
= Client has to first bind object
= Call method after binding

Parameter Passing

= Less restrictive than RPCs

= Supports system-wide object references

= Copy local objects, pass references of remote objects

Machine A Machine B
ocal Loca.lnn-n'gﬂ Remote object
reference L1 o Remate 02
weenee at reference R1 b S
. -
l v
Client code with
RMI to server at C
{proxy) New local
reference Copy of 01
d v
Remote ad
invocation with . . R
L1and R1as . Copy of R1 10 02
parameters Server code

Machine C (method implementation)




