
1

CSCI 5105

Instructor: Abhishek Chandra

Today

 Reliable Communication

 Reliable RPC

 Reliable Group Communication

2

RPC: Failures

 Network failures:

 Unable to locate servers

 Lost requests/replies

 Server crashes

 Client crashes

3 4

RPC: Network failures

 Client unable to locate server:

 Return error or raise exception

 Lost requests/replies:

 Timeout mechanisms

 Make operation idempotent

 Use sequence numbers, mark retransmissions

2

5

RPC Failure Semantics: Server failure

 Server may crash during RPC

 Did failure occur before or after operation?

 Operation semantics

 Exactly once: desirable but impossible to achieve

 At least once

 At most once

 No guarantee

6

RPC Failure Semantics: Client Failure

 Client crashes while server is computing

 Server computation becomes orphan

 Possible actions

 Extermination: log at client stub and explicitly kill
orphans

 Reincarnation: Divide time into epochs between
failures and delete computations from old epochs

 Expiration: give each RPC a fixed quantum T;
explicitly request extensions

Reliable Group Communication

 Group of servers

 Need to multicast messages reliably

 Questions:

 What does “reliable” mean?

 What happens when groups change?

7

Reliable Multicast

 Basic Multicast:

 Sender multicasts message, may reach subset of
receivers

 Goal: Message should reach all receivers

 Two cases:

 When no process fails

 When a process fails or joins a group

8

3

Basic Reliable Multicast

 Assume no process failures

 Receivers send an ACK for each message
received successfully

 Sender keeps local copy of message

 Retransmits if hasn’t received all ACKs

 What is the problem?

9

Scalability in Reliable Multicast

 Feedback implosion:

 Large number of receivers => sender becomes
overloaded with ACKs

 Reducing number of ACKs

 Use NACKs

 Problem?

10

Scalable Feedback Control

 Avoid sending all ACKs/NACKs to sender

 Feedback suppression

 Receiver multicasts NACK

 If a receiver sees a NACK, suppresses its own NACK

 How to avoid synchronized NACKs?

 Use random timers

 How to avoid feedback traffic to reliable hosts?

 Separate multicast channel for feedback and
retransmission

 How to scale up retransmissions?

 Allow a receiver with message to transmit

11

Hierarchical Feedback Control

 Use tree structure for feedback/retransmissions

 Receivers divided into small groups

 Each group has a coordinator

 Coordinators organized into a multicast tree

 Coordinator keeps track of missed messages
and retransmissions for its group

 Passes these along up the tree

12

4

Reliable Multicast with Process Failures

 What happens when processes can fail?

 What if some of the processes received the
message, but others did not?

 What if the sender fails?

 What if a new process joins the group?

13

Atomic Multicast

 Virtual synchrony: A message is delivered either
to all processes of a group or none at all

 Total ordering: Messages are delivered in the
same order

14

Virtual Synchrony: Basics

 Message receipt vs. delivery:

 Receipt: message received at the communication layer

 Delivery: message delivered to the application

 Group view:

 Set of processes in the group when sender issued the
message

 Unique for each message m

 Can differ for different messages

 View change: Change in group membership

 Node leaving or joining a group

15

Virtual Synchrony

 What happens when a group view changes?

 Message vc multicast to the group to announce
this change

 Can think of two messages:

 m and vc

 Need to order these messages

 If sender fails, can either deliver the message
to everyone or none at all

16

5

Message Ordering

 Total ordering: Messages are delivered in the
same order to all processes

 What order is it w.r.t. message sending?

 Unordered: Messages can be delivered in any
order

 FIFO: Messages from same process delivered in
order

 Causal: Causally-ordered messages delivered in
order

17

