CSCI 5105

Instructor: Abhishek Chandra

Today

= Process Resilience
= Process Groups
= Consensus Algorithms
= CAP Theorem

Process Resilience

= How to protect against process failure?
= How to ensure correct results?

Process Groups

= Use replication:
= Multiple replicas/copies of a single server
= Primary-based:
= One primary, other redundant servers
= Flat group:
= All are identical, need agreement among servers




Amount of Redundancy

= Depends on:
= How many faults can a system handle?
= What kind of faults can happen?

= k-fault tolerant system:
= Can handle k faulty servers

Client-Server Environment

= Client needs only one response
= Each server has ability to respond
= How many total servers do we need for a k-
fault tolerant system if failures are:
= Fail-stop/fail-silent?
= Byzantine?

Consensus (Group Agreement)

= Servers need to agree on a common value/state
= The state is distributed across servers
= The value(s) may be proposed by servers
= Examples?
= Two desired properties:
= Safety: Nothing bad will happen
= Liveness: Progress will eventually happen
= Hard problem, depends on:
= Reliability of communication channel
= Behavior of faulty servers

Consensus: Feasibility

= Factors:
= Process behavior: Synchronous or asynchronous
=« Communication delay: bounded or unbounded
= Message ordering: Ordered or unordered
= Message transmission: Unicast or multicast
= Can achieve agreement if:

= Synchronous: Bounded delay or ordered
messages

= Asynchronous: Not possible in general




Two-Army Problem

= Simple scenario:
= Two armies (perfect servers)

= Communicate through a messenger that can be
caught (unreliable communication channel)

= Both need to agree on a common value
= Question: Can they agree?
= Example: TCP connection termination

Consensus Algorithms

= Crash failures: Paxos
= Byzantine failures: Byzantine Fault Tolerance

Consensus with Crash Failures

= Assumption: Only crash failures
= Goal: Process group appears as a single, highly
robust process
= Every nonfaulty process sees the same state
sequence (values, commands) as every other
nonfaulty process

Paxos

= Assumptions:
= Partially synchronous system
= Unreliable network
= Nodes can crash, but have stable storage (so they
can resume from the pre-crash state)
= Fail-noisy failure model: Crash failures (eventually
detected), no Byzantine faults or collusion
= Used in Google’s Chubby, Apache Zookeeper
coordination services




Paxos: Basics

= Group of nodes
= A general agreement algorithm

= Nodes can propose different (and multiple) values
= Goals:

= All nodes must agree on the same value

= An agreed value must have been proposed

Paxos: Scenarios

= Multiple processes propose different values
concurrently

= Some processes may fail, so that:
= They may not receive the value

= They may receive the value, but others may not
be aware

= A failed process may return with an old value

Paxos: Entities

= 3 types of nodes:
= Proposers: Propose values
= Acceptors: Accept (or reject) values
= Learners: Learn the eventually accepted value
= Different processes can have different roles, or
the roles can be overlapping

Paxos Algorithm: Overview

= Each proposer can propose a value v with a
timestamp t
= All proposals have unique timestamps
= Goal: Pick a value v from all proposals
= Insights:
= Only need a quorum of acceptors to agree on a value
= Once a value is picked, then older proposals can be
rejected
= Once a value is picked by a quorum, then subsequent
proposers must agree to this value




Paxos Algorithm: Phase 1

= Phase 1a (Prepare Phase): Proposer sends a proposal
<t,v> to a quorum of acceptors
= Phase 1b (Promise Phase): An acceptor can reply
with a:
= Promise (not to accept a lower timestamped proposal,
sends the value of previous highest timstamp accepted
proposal)
= Reject (Won't accept this proposal)

Paxos Algorithm: Phase 2

= Phase 2a (Accept Phase): Proposer getting Promises
from quorum sends Accept
= With a value (highest-timestamped proposal’s value
seen so far, or v otherwise)
= Phase 2b (Learn Phase): Accepters send notification
of accepted value to learners

Paxos: Benefits

= Works if machines crash and resume:
= If proposer sends low timestamp, it can be rejected

= If an acceptor comes back with an old Promise, this
can be superseded by a newer proposal

= The final value can be propagated by any learner
= Robust to network partitions
= If one partition has a majority of acceptors

Byzantine Generals Problem

= N generals, M traitors (One commander)
= Problem: Traitors can lie, others don't know
who the traitors are
= Question: Can trusted generals agree on
whether to attack or retreat?
= Assumptions:
= Reliable communication channel
= Receiver of message can detect the sender




Byzantine Agreement: Requirements

= BA1: Every nonfaulty backup process stores the
same value.

= BA2: If the primary is nonfaulty then every
nonfaulty backup process stores exactly what
the primary had sent.

Byzantine Agreement: Feasibility Condition

= Must have: N >= 3M+1 for agreement

Byzantine Agreement Algorithm

= Recursive, Round-based

= Round 1: BAP (n, k): Commander sends a value to n-1
generals assuming k traitors (terminating condition: k=0)

= In each subsequent recursive round i:

Each general executes multiple instances of BAP (n-i,k-i+1)

Acts as a primary sending each value received in previous

round to a subset of (n-i) generals (those not involved in

the routing of the given value)

Each general determines the current round value by voting

among received values

Pass the value up by recursion

Byzantine Agreement: Feasible Case
N=4, M=1
[TTT]

0 O OO 6
® & T+ & 6

[(mnTl [TTF]

BAP(4,1) BAP(3,0)




Byzantine Agreement: Infeasible Case
N=3, M=1

Reliability with Network Partitioning

= What if network is partitioned?

T (o = Can all processes still see the same state?
@ @ = Need to trade off safety with liveness
T
[Tl
BAP(3,1) BAP(2,0)
N=3M+1 for agreement
CAP Theorem CAP Theorem - Revisited

= C: Consistency
= A: Availability
= P: Tolerance to network partitions

= "2 of 3" rule: Can have only 2 of these properties
= Examples?

= Is "2 of 3” rule misleading?

= Partitions are rare, can have all 3 most of the time

= Granularity of C and A can vary: whole system,
subsystem, operation/data-specific

= C, A, P are continuous (non-binary) properties

= Partitions have to be managed




Partition-Latency Relation

= How would a node detect partitions in practice?
= Related to communication latency
= Network latency

= Can be defined based on app latency
requirements

= No global definition of partitioning

= Different nodes may (or may not) detect network
partition

Partition Management

= How to handle partitions when they occur?
= Key questions:

= How to operate during a partition?

= How to recover after re-connection?

Partition Mode

= How should the two sides operate under a
partition?
= Allow some operations. E.g.: those that do not
conflict or could be resolved easily

= Delay some and prohibit some. E.g.: those that
need to be globally consistent

= Maintain operation history. E.g.: version vectors

Partition Recovery

= Make state consistent on both sides

= Roll forward from a state before the partition
= Use the logs to apply/merge operations

= How to merge conflicts?
= Use version vectors
= Might need manual intervention

= Automated if we allow only limited operations.
E.g.: only commutative operations

= Compensate for mistakes
= Cancel a duplicate operation




