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Today 

 Process Resilience 

 Process Groups 

 Consensus Algorithms 

 CAP Theorem 

 

 

Process Resilience 

 How to protect against process failure? 

 How to ensure correct results? 
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Process Groups 

 Use replication: 

 Multiple replicas/copies of a single server 

 Primary-based: 

 One primary, other redundant servers 

 Flat group:  

 All are identical, need agreement among servers 
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Amount of Redundancy 

 Depends on: 

 How many faults can a system handle? 

 What kind of faults can happen? 

 k-fault tolerant system: 

 Can handle k faulty servers 
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Client-Server Environment 

 Client needs only one response 

 Each server has ability to respond 

 How many total servers do we need for a k-
fault tolerant system if failures are: 

 Fail-stop/fail-silent? 

 Byzantine? 
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Consensus (Group Agreement) 

 Servers need to agree on a common value/state 

 The state is distributed across servers 

 The value(s) may be proposed by servers 

 Examples? 

 Two desired properties: 

 Safety: Nothing bad will happen 

 Liveness: Progress will eventually happen 

 Hard problem, depends on: 

 Reliability of communication channel 

 Behavior of faulty servers 
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Consensus: Feasibility 

 Factors: 

 Process behavior: Synchronous or asynchronous 

 Communication delay: bounded or unbounded 

 Message ordering: Ordered or unordered 

 Message transmission: Unicast or multicast 

 Can achieve agreement if: 

 Synchronous: Bounded delay or ordered 
messages 

 Asynchronous: Not possible in general 
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Two-Army Problem 

 Simple scenario: 

 Two armies (perfect servers)  

 Communicate through a messenger that can be 
caught (unreliable communication channel) 

 Both need to agree on a common value 

 Question: Can they agree? 

 Example: TCP connection termination 

Consensus Algorithms 

 Crash failures: Paxos 

 Byzantine failures: Byzantine Fault Tolerance 
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Consensus with Crash Failures 

 Assumption: Only crash failures 

 Goal: Process group appears as a single, highly 
robust process 

 Every nonfaulty process sees the same state 
sequence (values, commands) as every other 
nonfaulty process 
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Paxos 

 Assumptions: 

 Partially synchronous system 

 Unreliable network  

 Nodes can crash, but have stable storage (so they 
can resume from the pre-crash state) 

 Fail-noisy failure model: Crash failures (eventually 
detected), no Byzantine faults or collusion 

 Used in Google’s Chubby, Apache Zookeeper 
coordination services 
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Paxos: Basics 

 Group of nodes 

 A general agreement algorithm 

 Nodes can propose different (and multiple) values 

 Goals:  

 All nodes must agree on the same value 

 An agreed value must have been proposed 
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Paxos: Scenarios 

 Multiple processes propose different values 
concurrently 

 Some processes may fail, so that: 

 They may not receive the value 

 They may receive the value, but others may not 
be aware  

 A failed process may return with an old value 
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Paxos: Entities 

 3 types of nodes: 

 Proposers: Propose values 

 Acceptors: Accept (or reject) values 

 Learners: Learn the eventually accepted value 

 Different processes can have different roles, or 
the roles can be overlapping 
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Paxos Algorithm: Overview 

 Each proposer can propose a value v with a 
timestamp t 

 All proposals have unique timestamps 

 Goal: Pick a value v from all proposals 

 Insights: 

 Only need a quorum of acceptors to agree on a value 

 Once a value is picked, then older proposals can be 
rejected 

 Once a value is picked by a quorum, then subsequent 
proposers must agree to this value 
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Paxos Algorithm: Phase 1 

 Phase 1a (Prepare Phase): Proposer sends a proposal 
<t,v> to a quorum of acceptors 

 Phase 1b (Promise Phase): An acceptor can reply 
with a: 

 Promise (not to accept a lower timestamped proposal, 
sends the value of previous highest timstamp accepted 
proposal) 

 Reject (Won’t accept this proposal) 

Paxos Algorithm: Phase 2 

 Phase 2a (Accept Phase): Proposer getting Promises 
from quorum sends Accept  

 With a value (highest-timestamped proposal’s value 
seen so far, or v otherwise) 

 Phase 2b (Learn Phase): Accepters send notification 
of accepted value to learners  

Paxos: Benefits 

 Works if machines crash and resume: 

 If proposer sends low timestamp, it can be rejected 

 If an acceptor comes back with an old Promise, this 
can be superseded by a newer proposal 

 The final value can be propagated by any learner 

 Robust to network partitions 

 If one partition has a majority of acceptors 
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Byzantine Generals Problem 

 N generals, M traitors (One commander) 

 Problem: Traitors can lie, others don’t know 
who the traitors are 

 Question: Can trusted generals agree on 
whether to attack or retreat? 

 Assumptions: 

 Reliable communication channel 

 Receiver of message can detect the sender 
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Byzantine Agreement: Requirements 

 BA1: Every nonfaulty backup process stores the 
same value. 

 BA2: If the primary is nonfaulty then every 
nonfaulty backup process stores exactly what 
the primary had sent. 
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Byzantine Agreement: Feasibility Condition 

 Must have: N >= 3M+1 for agreement 

 Why? 
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Byzantine Agreement Algorithm 

 Recursive, Round-based  

 Round 1: BAP (n, k): Commander sends a value to n-1 
generals assuming k traitors (terminating condition: k=0) 

 In each subsequent recursive round i: 

 Each general executes multiple instances of BAP (n-i,k-i+1) 

 Acts as a primary sending each value received in previous 
round to a subset of (n-i) generals (those not involved in 
the routing of the given value) 

 Each general determines the current round value by voting 
among received values  

 Pass the value up by recursion 
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Byzantine Agreement: Feasible Case 
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Byzantine Agreement: Infeasible Case 
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Reliability with Network Partitioning 

 What if network is partitioned? 

 Can all processes still see the same state? 

 Need to trade off safety with liveness 
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CAP Theorem 

 C: Consistency 

 A: Availability 

 P: Tolerance to network partitions 

 

 “2 of 3” rule: Can have only 2 of these properties 

 Examples? 

CAP Theorem - Revisited 

 Is “2 of 3” rule misleading? 

 

 Partitions are rare, can have all 3 most of the time 

 Granularity of C and A can vary: whole system, 
subsystem, operation/data-specific 

 C, A, P are continuous (non-binary) properties 

 

 Partitions have to be managed 

 



8 

Partition-Latency Relation 

 How would a node detect partitions in practice? 

 Related to communication latency 

 Network latency 

 Can be defined based on app latency 
requirements 

 No global definition of partitioning 

 Different nodes may (or may not) detect network 
partition 

Partition Management 

 How to handle partitions when they occur?  

 Key questions: 

 How to operate during a partition? 

 How to recover after re-connection? 

Partition Mode 

 How should the two sides operate under a 
partition? 

 Allow some operations. E.g.: those that do not 
conflict or could be resolved easily 

 Delay some and prohibit some. E.g.: those that 
need to be globally consistent 

 Maintain operation history. E.g.: version vectors 

 

 

Partition Recovery 

 Make state consistent on both sides 

 Roll forward from a state before the partition 

 Use the logs to apply/merge operations 

 How to merge conflicts?  

 Use version vectors 

 Might need manual intervention 

 Automated if we allow only limited operations. 
E.g.: only commutative operations 

 Compensate for mistakes 

 Cancel a duplicate operation 

 


