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Today 

 Process Resilience 

 Process Groups 

 Consensus Algorithms 

 CAP Theorem 

 

 

Process Resilience 

 How to protect against process failure? 

 How to ensure correct results? 
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Process Groups 

 Use replication: 

 Multiple replicas/copies of a single server 

 Primary-based: 

 One primary, other redundant servers 

 Flat group:  

 All are identical, need agreement among servers 
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Amount of Redundancy 

 Depends on: 

 How many faults can a system handle? 

 What kind of faults can happen? 

 k-fault tolerant system: 

 Can handle k faulty servers 
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Client-Server Environment 

 Client needs only one response 

 Each server has ability to respond 

 How many total servers do we need for a k-
fault tolerant system if failures are: 

 Fail-stop/fail-silent? 

 Byzantine? 
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Consensus (Group Agreement) 

 Servers need to agree on a common value/state 

 The state is distributed across servers 

 The value(s) may be proposed by servers 

 Examples? 

 Two desired properties: 

 Safety: Nothing bad will happen 

 Liveness: Progress will eventually happen 

 Hard problem, depends on: 

 Reliability of communication channel 

 Behavior of faulty servers 
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Consensus: Feasibility 

 Factors: 

 Process behavior: Synchronous or asynchronous 

 Communication delay: bounded or unbounded 

 Message ordering: Ordered or unordered 

 Message transmission: Unicast or multicast 

 Can achieve agreement if: 

 Synchronous: Bounded delay or ordered 
messages 

 Asynchronous: Not possible in general 
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Two-Army Problem 

 Simple scenario: 

 Two armies (perfect servers)  

 Communicate through a messenger that can be 
caught (unreliable communication channel) 

 Both need to agree on a common value 

 Question: Can they agree? 

 Example: TCP connection termination 

Consensus Algorithms 

 Crash failures: Paxos 

 Byzantine failures: Byzantine Fault Tolerance 
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Consensus with Crash Failures 

 Assumption: Only crash failures 

 Goal: Process group appears as a single, highly 
robust process 

 Every nonfaulty process sees the same state 
sequence (values, commands) as every other 
nonfaulty process 
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Paxos 

 Assumptions: 

 Partially synchronous system 

 Unreliable network  

 Nodes can crash, but have stable storage (so they 
can resume from the pre-crash state) 

 Fail-noisy failure model: Crash failures (eventually 
detected), no Byzantine faults or collusion 

 Used in Google’s Chubby, Apache Zookeeper 
coordination services 

 

 

12 



4 

Paxos: Basics 

 Group of nodes 

 A general agreement algorithm 

 Nodes can propose different (and multiple) values 

 Goals:  

 All nodes must agree on the same value 

 An agreed value must have been proposed 
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Paxos: Scenarios 

 Multiple processes propose different values 
concurrently 

 Some processes may fail, so that: 

 They may not receive the value 

 They may receive the value, but others may not 
be aware  

 A failed process may return with an old value 
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Paxos: Entities 

 3 types of nodes: 

 Proposers: Propose values 

 Acceptors: Accept (or reject) values 

 Learners: Learn the eventually accepted value 

 Different processes can have different roles, or 
the roles can be overlapping 
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Paxos Algorithm: Overview 

 Each proposer can propose a value v with a 
timestamp t 

 All proposals have unique timestamps 

 Goal: Pick a value v from all proposals 

 Insights: 

 Only need a quorum of acceptors to agree on a value 

 Once a value is picked, then older proposals can be 
rejected 

 Once a value is picked by a quorum, then subsequent 
proposers must agree to this value 
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Paxos Algorithm: Phase 1 

 Phase 1a (Prepare Phase): Proposer sends a proposal 
<t,v> to a quorum of acceptors 

 Phase 1b (Promise Phase): An acceptor can reply 
with a: 

 Promise (not to accept a lower timestamped proposal, 
sends the value of previous highest timstamp accepted 
proposal) 

 Reject (Won’t accept this proposal) 

Paxos Algorithm: Phase 2 

 Phase 2a (Accept Phase): Proposer getting Promises 
from quorum sends Accept  

 With a value (highest-timestamped proposal’s value 
seen so far, or v otherwise) 

 Phase 2b (Learn Phase): Accepters send notification 
of accepted value to learners  

Paxos: Benefits 

 Works if machines crash and resume: 

 If proposer sends low timestamp, it can be rejected 

 If an acceptor comes back with an old Promise, this 
can be superseded by a newer proposal 

 The final value can be propagated by any learner 

 Robust to network partitions 

 If one partition has a majority of acceptors 
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Byzantine Generals Problem 

 N generals, M traitors (One commander) 

 Problem: Traitors can lie, others don’t know 
who the traitors are 

 Question: Can trusted generals agree on 
whether to attack or retreat? 

 Assumptions: 

 Reliable communication channel 

 Receiver of message can detect the sender 
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Byzantine Agreement: Requirements 

 BA1: Every nonfaulty backup process stores the 
same value. 

 BA2: If the primary is nonfaulty then every 
nonfaulty backup process stores exactly what 
the primary had sent. 
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Byzantine Agreement: Feasibility Condition 

 Must have: N >= 3M+1 for agreement 

 Why? 
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Byzantine Agreement Algorithm 

 Recursive, Round-based  

 Round 1: BAP (n, k): Commander sends a value to n-1 
generals assuming k traitors (terminating condition: k=0) 

 In each subsequent recursive round i: 

 Each general executes multiple instances of BAP (n-i,k-i+1) 

 Acts as a primary sending each value received in previous 
round to a subset of (n-i) generals (those not involved in 
the routing of the given value) 

 Each general determines the current round value by voting 
among received values  

 Pass the value up by recursion 
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Byzantine Agreement: Feasible Case 
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Byzantine Agreement: Infeasible Case 

BAP(3,1) BAP(2,0) 
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Reliability with Network Partitioning 

 What if network is partitioned? 

 Can all processes still see the same state? 

 Need to trade off safety with liveness 
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CAP Theorem 

 C: Consistency 

 A: Availability 

 P: Tolerance to network partitions 

 

 “2 of 3” rule: Can have only 2 of these properties 

 Examples? 

CAP Theorem - Revisited 

 Is “2 of 3” rule misleading? 

 

 Partitions are rare, can have all 3 most of the time 

 Granularity of C and A can vary: whole system, 
subsystem, operation/data-specific 

 C, A, P are continuous (non-binary) properties 

 

 Partitions have to be managed 
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Partition-Latency Relation 

 How would a node detect partitions in practice? 

 Related to communication latency 

 Network latency 

 Can be defined based on app latency 
requirements 

 No global definition of partitioning 

 Different nodes may (or may not) detect network 
partition 

Partition Management 

 How to handle partitions when they occur?  

 Key questions: 

 How to operate during a partition? 

 How to recover after re-connection? 

Partition Mode 

 How should the two sides operate under a 
partition? 

 Allow some operations. E.g.: those that do not 
conflict or could be resolved easily 

 Delay some and prohibit some. E.g.: those that 
need to be globally consistent 

 Maintain operation history. E.g.: version vectors 

 

 

Partition Recovery 

 Make state consistent on both sides 

 Roll forward from a state before the partition 

 Use the logs to apply/merge operations 

 How to merge conflicts?  

 Use version vectors 

 Might need manual intervention 

 Automated if we allow only limited operations. 
E.g.: only commutative operations 

 Compensate for mistakes 

 Cancel a duplicate operation 

 


