
1

CSCI 5105

Instructor: Abhishek Chandra

2

Today

 Process Resilience

 Process Groups

 Consensus Algorithms

 CAP Theorem

Process Resilience

 How to protect against process failure?

 How to ensure correct results?

3 4

Process Groups

 Use replication:

 Multiple replicas/copies of a single server

 Primary-based:

 One primary, other redundant servers

 Flat group:

 All are identical, need agreement among servers

2

5

Amount of Redundancy

 Depends on:

 How many faults can a system handle?

 What kind of faults can happen?

 k-fault tolerant system:

 Can handle k faulty servers

6

Client-Server Environment

 Client needs only one response

 Each server has ability to respond

 How many total servers do we need for a k-
fault tolerant system if failures are:

 Fail-stop/fail-silent?

 Byzantine?

7

Consensus (Group Agreement)

 Servers need to agree on a common value/state

 The state is distributed across servers

 The value(s) may be proposed by servers

 Examples?

 Two desired properties:

 Safety: Nothing bad will happen

 Liveness: Progress will eventually happen

 Hard problem, depends on:

 Reliability of communication channel

 Behavior of faulty servers

8

Consensus: Feasibility

 Factors:

 Process behavior: Synchronous or asynchronous

 Communication delay: bounded or unbounded

 Message ordering: Ordered or unordered

 Message transmission: Unicast or multicast

 Can achieve agreement if:

 Synchronous: Bounded delay or ordered
messages

 Asynchronous: Not possible in general

3

9

Two-Army Problem

 Simple scenario:

 Two armies (perfect servers)

 Communicate through a messenger that can be
caught (unreliable communication channel)

 Both need to agree on a common value

 Question: Can they agree?

 Example: TCP connection termination

Consensus Algorithms

 Crash failures: Paxos

 Byzantine failures: Byzantine Fault Tolerance

10

Consensus with Crash Failures

 Assumption: Only crash failures

 Goal: Process group appears as a single, highly
robust process

 Every nonfaulty process sees the same state
sequence (values, commands) as every other
nonfaulty process

11

Paxos

 Assumptions:

 Partially synchronous system

 Unreliable network

 Nodes can crash, but have stable storage (so they
can resume from the pre-crash state)

 Fail-noisy failure model: Crash failures (eventually
detected), no Byzantine faults or collusion

 Used in Google’s Chubby, Apache Zookeeper
coordination services

12

4

Paxos: Basics

 Group of nodes

 A general agreement algorithm

 Nodes can propose different (and multiple) values

 Goals:

 All nodes must agree on the same value

 An agreed value must have been proposed

13

Paxos: Scenarios

 Multiple processes propose different values
concurrently

 Some processes may fail, so that:

 They may not receive the value

 They may receive the value, but others may not
be aware

 A failed process may return with an old value

14

Paxos: Entities

 3 types of nodes:

 Proposers: Propose values

 Acceptors: Accept (or reject) values

 Learners: Learn the eventually accepted value

 Different processes can have different roles, or
the roles can be overlapping

15

Paxos Algorithm: Overview

 Each proposer can propose a value v with a
timestamp t

 All proposals have unique timestamps

 Goal: Pick a value v from all proposals

 Insights:

 Only need a quorum of acceptors to agree on a value

 Once a value is picked, then older proposals can be
rejected

 Once a value is picked by a quorum, then subsequent
proposers must agree to this value

16

5

Paxos Algorithm: Phase 1

 Phase 1a (Prepare Phase): Proposer sends a proposal
<t,v> to a quorum of acceptors

 Phase 1b (Promise Phase): An acceptor can reply
with a:

 Promise (not to accept a lower timestamped proposal,
sends the value of previous highest timstamp accepted
proposal)

 Reject (Won’t accept this proposal)

Paxos Algorithm: Phase 2

 Phase 2a (Accept Phase): Proposer getting Promises
from quorum sends Accept

 With a value (highest-timestamped proposal’s value
seen so far, or v otherwise)

 Phase 2b (Learn Phase): Accepters send notification
of accepted value to learners

Paxos: Benefits

 Works if machines crash and resume:

 If proposer sends low timestamp, it can be rejected

 If an acceptor comes back with an old Promise, this
can be superseded by a newer proposal

 The final value can be propagated by any learner

 Robust to network partitions

 If one partition has a majority of acceptors

19 20

Byzantine Generals Problem

 N generals, M traitors (One commander)

 Problem: Traitors can lie, others don’t know
who the traitors are

 Question: Can trusted generals agree on
whether to attack or retreat?

 Assumptions:

 Reliable communication channel

 Receiver of message can detect the sender

6

Byzantine Agreement: Requirements

 BA1: Every nonfaulty backup process stores the
same value.

 BA2: If the primary is nonfaulty then every
nonfaulty backup process stores exactly what
the primary had sent.

21

Byzantine Agreement: Feasibility Condition

 Must have: N >= 3M+1 for agreement

 Why?

22

23

Byzantine Agreement Algorithm

 Recursive, Round-based

 Round 1: BAP (n, k): Commander sends a value to n-1
generals assuming k traitors (terminating condition: k=0)

 In each subsequent recursive round i:

 Each general executes multiple instances of BAP (n-i,k-i+1)

 Acts as a primary sending each value received in previous
round to a subset of (n-i) generals (those not involved in
the routing of the given value)

 Each general determines the current round value by voting
among received values

 Pass the value up by recursion

24

Byzantine Agreement: Feasible Case

1 2

3 4

N=4, M=1

T

T
T

1 2

3 4

T

F

1 2

3 4

[T,T,T]

[T,T,F] [T,T,T]

…

BAP(4,1) BAP(3,0)

7

25

1 2

3

N=3, M=1

T

T

1 2

3

F

1 2

3

[T,F]

[T,T]

N=3M+1 for agreement

Byzantine Agreement: Infeasible Case

BAP(3,1) BAP(2,0)

T

Reliability with Network Partitioning

 What if network is partitioned?

 Can all processes still see the same state?

 Need to trade off safety with liveness

26

CAP Theorem

 C: Consistency

 A: Availability

 P: Tolerance to network partitions

 “2 of 3” rule: Can have only 2 of these properties

 Examples?

CAP Theorem - Revisited

 Is “2 of 3” rule misleading?

 Partitions are rare, can have all 3 most of the time

 Granularity of C and A can vary: whole system,
subsystem, operation/data-specific

 C, A, P are continuous (non-binary) properties

 Partitions have to be managed

8

Partition-Latency Relation

 How would a node detect partitions in practice?

 Related to communication latency

 Network latency

 Can be defined based on app latency
requirements

 No global definition of partitioning

 Different nodes may (or may not) detect network
partition

Partition Management

 How to handle partitions when they occur?

 Key questions:

 How to operate during a partition?

 How to recover after re-connection?

Partition Mode

 How should the two sides operate under a
partition?

 Allow some operations. E.g.: those that do not
conflict or could be resolved easily

 Delay some and prohibit some. E.g.: those that
need to be globally consistent

 Maintain operation history. E.g.: version vectors

Partition Recovery

 Make state consistent on both sides

 Roll forward from a state before the partition

 Use the logs to apply/merge operations

 How to merge conflicts?

 Use version vectors

 Might need manual intervention

 Automated if we allow only limited operations.
E.g.: only commutative operations

 Compensate for mistakes

 Cancel a duplicate operation

