
1

CSCI 5105

Instructor: Abhishek Chandra

2

Today

 Process Resilience

 Process Groups

 Consensus Algorithms

 CAP Theorem

Process Resilience

 How to protect against process failure?

 How to ensure correct results?

3 4

Process Groups

 Use replication:

 Multiple replicas/copies of a single server

 Primary-based:

 One primary, other redundant servers

 Flat group:

 All are identical, need agreement among servers

2

5

Amount of Redundancy

 Depends on:

 How many faults can a system handle?

 What kind of faults can happen?

 k-fault tolerant system:

 Can handle k faulty servers

6

Client-Server Environment

 Client needs only one response

 Each server has ability to respond

 How many total servers do we need for a k-
fault tolerant system if failures are:

 Fail-stop/fail-silent?

 Byzantine?

7

Consensus (Group Agreement)

 Servers need to agree on a common value/state

 The state is distributed across servers

 The value(s) may be proposed by servers

 Examples?

 Two desired properties:

 Safety: Nothing bad will happen

 Liveness: Progress will eventually happen

 Hard problem, depends on:

 Reliability of communication channel

 Behavior of faulty servers

8

Consensus: Feasibility

 Factors:

 Process behavior: Synchronous or asynchronous

 Communication delay: bounded or unbounded

 Message ordering: Ordered or unordered

 Message transmission: Unicast or multicast

 Can achieve agreement if:

 Synchronous: Bounded delay or ordered
messages

 Asynchronous: Not possible in general

3

9

Two-Army Problem

 Simple scenario:

 Two armies (perfect servers)

 Communicate through a messenger that can be
caught (unreliable communication channel)

 Both need to agree on a common value

 Question: Can they agree?

 Example: TCP connection termination

Consensus Algorithms

 Crash failures: Paxos

 Byzantine failures: Byzantine Fault Tolerance

10

Consensus with Crash Failures

 Assumption: Only crash failures

 Goal: Process group appears as a single, highly
robust process

 Every nonfaulty process sees the same state
sequence (values, commands) as every other
nonfaulty process

11

Paxos

 Assumptions:

 Partially synchronous system

 Unreliable network

 Nodes can crash, but have stable storage (so they
can resume from the pre-crash state)

 Fail-noisy failure model: Crash failures (eventually
detected), no Byzantine faults or collusion

 Used in Google’s Chubby, Apache Zookeeper
coordination services

12

4

Paxos: Basics

 Group of nodes

 A general agreement algorithm

 Nodes can propose different (and multiple) values

 Goals:

 All nodes must agree on the same value

 An agreed value must have been proposed

13

Paxos: Scenarios

 Multiple processes propose different values
concurrently

 Some processes may fail, so that:

 They may not receive the value

 They may receive the value, but others may not
be aware

 A failed process may return with an old value

14

Paxos: Entities

 3 types of nodes:

 Proposers: Propose values

 Acceptors: Accept (or reject) values

 Learners: Learn the eventually accepted value

 Different processes can have different roles, or
the roles can be overlapping

15

Paxos Algorithm: Overview

 Each proposer can propose a value v with a
timestamp t

 All proposals have unique timestamps

 Goal: Pick a value v from all proposals

 Insights:

 Only need a quorum of acceptors to agree on a value

 Once a value is picked, then older proposals can be
rejected

 Once a value is picked by a quorum, then subsequent
proposers must agree to this value

16

5

Paxos Algorithm: Phase 1

 Phase 1a (Prepare Phase): Proposer sends a proposal
<t,v> to a quorum of acceptors

 Phase 1b (Promise Phase): An acceptor can reply
with a:

 Promise (not to accept a lower timestamped proposal,
sends the value of previous highest timstamp accepted
proposal)

 Reject (Won’t accept this proposal)

Paxos Algorithm: Phase 2

 Phase 2a (Accept Phase): Proposer getting Promises
from quorum sends Accept

 With a value (highest-timestamped proposal’s value
seen so far, or v otherwise)

 Phase 2b (Learn Phase): Accepters send notification
of accepted value to learners

Paxos: Benefits

 Works if machines crash and resume:

 If proposer sends low timestamp, it can be rejected

 If an acceptor comes back with an old Promise, this
can be superseded by a newer proposal

 The final value can be propagated by any learner

 Robust to network partitions

 If one partition has a majority of acceptors

19 20

Byzantine Generals Problem

 N generals, M traitors (One commander)

 Problem: Traitors can lie, others don’t know
who the traitors are

 Question: Can trusted generals agree on
whether to attack or retreat?

 Assumptions:

 Reliable communication channel

 Receiver of message can detect the sender

6

Byzantine Agreement: Requirements

 BA1: Every nonfaulty backup process stores the
same value.

 BA2: If the primary is nonfaulty then every
nonfaulty backup process stores exactly what
the primary had sent.

21

Byzantine Agreement: Feasibility Condition

 Must have: N >= 3M+1 for agreement

 Why?

22

23

Byzantine Agreement Algorithm

 Recursive, Round-based

 Round 1: BAP (n, k): Commander sends a value to n-1
generals assuming k traitors (terminating condition: k=0)

 In each subsequent recursive round i:

 Each general executes multiple instances of BAP (n-i,k-i+1)

 Acts as a primary sending each value received in previous
round to a subset of (n-i) generals (those not involved in
the routing of the given value)

 Each general determines the current round value by voting
among received values

 Pass the value up by recursion

24

Byzantine Agreement: Feasible Case

1 2

3 4

N=4, M=1

T

T
T

1 2

3 4

T

F

1 2

3 4

[T,T,T]

[T,T,F] [T,T,T]

…

BAP(4,1) BAP(3,0)

7

25

1 2

3

N=3, M=1

T

T

1 2

3

F

1 2

3

[T,F]

[T,T]

N=3M+1 for agreement

Byzantine Agreement: Infeasible Case

BAP(3,1) BAP(2,0)

T

Reliability with Network Partitioning

 What if network is partitioned?

 Can all processes still see the same state?

 Need to trade off safety with liveness

26

CAP Theorem

 C: Consistency

 A: Availability

 P: Tolerance to network partitions

 “2 of 3” rule: Can have only 2 of these properties

 Examples?

CAP Theorem - Revisited

 Is “2 of 3” rule misleading?

 Partitions are rare, can have all 3 most of the time

 Granularity of C and A can vary: whole system,
subsystem, operation/data-specific

 C, A, P are continuous (non-binary) properties

 Partitions have to be managed

8

Partition-Latency Relation

 How would a node detect partitions in practice?

 Related to communication latency

 Network latency

 Can be defined based on app latency
requirements

 No global definition of partitioning

 Different nodes may (or may not) detect network
partition

Partition Management

 How to handle partitions when they occur?

 Key questions:

 How to operate during a partition?

 How to recover after re-connection?

Partition Mode

 How should the two sides operate under a
partition?

 Allow some operations. E.g.: those that do not
conflict or could be resolved easily

 Delay some and prohibit some. E.g.: those that
need to be globally consistent

 Maintain operation history. E.g.: version vectors

Partition Recovery

 Make state consistent on both sides

 Roll forward from a state before the partition

 Use the logs to apply/merge operations

 How to merge conflicts?

 Use version vectors

 Might need manual intervention

 Automated if we allow only limited operations.
E.g.: only commutative operations

 Compensate for mistakes

 Cancel a duplicate operation

