
1 

CSCI 5105 
 

Instructor: Abhishek Chandra 

2 

Today 

 Naming 

 Basics 

 Flat Naming 

3 

Naming 

 Names used to refer to entities: 

 Files, hosts, processes, devices 

 Name resolution: 

 Find the named entity (access it, find its location) 

 Distributed naming: 

 Entities are distributed 

 Naming system itself may be distributed 

Naming: Issues 

 How are names specified? 

 Where are names stored? 

 How do we locate an entity given its name? 

 

4 



2 

Types of Names 

 Addresses 

 Identifiers 

 Human-friendly names 

5 6 

Addresses 

 Name of an entity’s access point 

 Provides a means to access the entity 

 E.g.: IP address, port no., etc. 

 We could use an address as the name of an 
entity 

 E.g.: IP address for a machine, http server’s TCP-
tuple, etc. 

 Problems? 

7 

Location-Independence 

 What happens to the name if: 

 The entity is moved? 

 The entity has multiple addresses? 

 Location-independent name: 

 Does not depend on the address/location of the 
entity 

 

8 

Identifiers and Human-friendly Names 

 Identifier: Name used to uniquely identify an entity 

 E.g.: inode, unique key 

 Often specified in machine-readable form 

 Context-dependent: IP address can be considered an 
identifier or an address 

 Human-friendly names 

 Typically a sequence of characters  

 E.g.: host name, file name, URL 



3 

9 

Naming Systems 

 Provide name resolution: How do we resolve a 
name to its address? 

 Flat Naming 

 Used for identifiers (names without any implicit 
structure) 

 Structured Naming 

 Used for human friendly names (with structure) 

 Attribute-based Naming 

 Used for descriptive names (that describe what 
the entities are) 

 

10 

Flat Naming 

 Unstructured names 

 Any entity can have any name 

 All names are semantically equivalent 

 No information about location 

 Typically a sequence of bits. E.g.: IDs, keys  

11 

Flat Name Resolution 

 Broadcasting and Multicasting 

 Forwarding Pointers 

 Distributed Hash Tables 

 Hierarchical Approach 

12 

Broadcasting and Multicasting 

 Two steps: 

 Broadcast the name 

 Named entity responds with address 

 Example: ARP (Address Resolution Protocol) 

 Convert IP address to MAC address 

 Issues? 

 Could use multicast instead of broadcast for 
focused queries 



4 

13 

Forwarding Pointers 

 Leave a pointer to the new location if the entity 
moves 

 Name resolution: 

 Get initial location of an entity 

 Follow chain of pointers 

 Example: SSP chains for RMI with distributed 
objects 

 Issues? 

14 

Home-based Approach 

 Each entity has a home location 

 Keeps track of current address of entity 

 Example: Mobile IP 

 Each host has a home IP address 

 Gets care-of address at new location 

 Clients connect to home IP address initially 

 Packets tunneled to C/O address 

 Issues? 

15 

Distributed Hash Tables 

 An identifier is a key in a hash space 

 Each node is assigned a key 

 Entities are also assigned keys from the same 
space 

 Mapped to “closest”-key nodes 

 E.g.: file placed on node with next highest key 

16 

Name Resolution 

 Use Chord DHT system as example 

 Given key k, find succ(k) 

 Succ(k): The node that holds k 

 E.g.: node with smallest id ≥ k 

 Name resolution: 

 Each node holds pointer to its successor and 
predecessor 

 Forwards the key in the appropriate direction 



5 

17 

Scalable Name Resolution 

 Keep shortcuts to distant parts of the id-space 

 Finger Table 

 If m-bit hash space, keep table of m entries 

 FTp[i] = succ(p+2i-1) 

 i-th entry corresponds to a distance of at least 2i-1 

 Lookup k: Forward to entry FTp[j] s.t. 

 FTp[j] ≤ k and 

 FTp[j+1] > k 

18 

Handling Node Churn 

 Node joining 

 Lookup successor 

 Announce itself to successor and predecessor 

 Initialize finger table entries accordingly 

 Keeping finger tables updated 

 Periodically send keep-alive messages to 
successor and predecessor 

 Check that tables are consistent 

19 

Increasing Efficiency 

 Topology-based key assignment 

 Incorporate network into the hash function 

 Proximity neighbor selection 

 If multiple choice of neighbors on join, select the 
closest neighbor 

 Proximity routing 

 Keep multiple choices for each finger table entry 

 Route to the closest node 

 

Hierarchical Approach 

 Entities assigned names or ids 

 Network divided into a set of domains 

 Single top-level (root) domain 

 Each domain divided into sub-domains 

 Leaf domains: contain records for entities 

 Directory node (DN): One for each domain 

 Tracks entities in the domain 

 Location record (LR) for entity E:  

 Pointer to DN for sub-domain containing E 

 At leaf, contains actual address for E 

20 



6 

Name Resolution 

 Request for entity E starts at a leaf DN 

 Recursively forwarded up the tree until find a DN 
with a LR for E 

 Then recursively goes down the tree till find leaf 
DN containing E 

 Insertion/deletion happen in a similar fashion 

 Replication:  

 A DN may have multiple pointers 

21 

Scalability 

 Domains are partitioned across a set of hosts 

 Geographic scalability: 

 By assigning entities to local domains 

 Size scalability: 

 By distributing higher-level domains, load 
balancing 

22 


