
1

CSCI 5105

Instructor: Abhishek Chandra

2

Today

 Distributed Mutual Exclusion

 Leader Election

3

Distributed Mutual Exclusion

 Multiple processes on different machines may
need to access a critical section

 Shared-memory systems:

 Semaphores, mutexes, etc.

 Typically implemented in shared memory

 Processes share same blocking queues

 How to implement mutual exclusion in
distributed systems?

4

Centralized Algorithm

 A coordinator grants access to critical section

 Maintains a local queue

 Can be elected using an election algorithm

 A process sends request to coordinator

 If nobody in critical section, grant access

 Otherwise, put process in queue

 When process done:

 Send release to coordinator

 Coordinator grants access to next process in queue

2

5

Centralized Algorithm

6

Centralized Algorithm: Properties

 Simple and efficient:

 Requires only 3 messages per request grant

 No starvation or deadlock

 Problem:

 What happens when coordinator crashes?

7

Decentralized Algorithm:
Replicated Coordinator

 Have n replicas of the coordinator

 A coordinator grants only one request at a time

 Need to get a majority m of permissions

 Otherwise backoff and retry after random time

 Resource release:

 Send release message to each of the m
coordinators

8

Replicated Coordinator: Problems

 Problem 1: What if a coordinator fails and
resets its state?

 Problem only if a majority fail at the same time:
What are the chances?

 Problem 2:What if there is a lot of resource
contention?

3

9

Distributed Algorithm:
Timestamp-based Algorithm

 All events are totally ordered

 To gain access:

 Send a request to all processes with timestamp

 On receipt of request:

 If don’t care, send OK

 If already in critical section, queue the request

 If want to enter the critical section, compare
timestamp of request to own request: Send OK
or queue based on timestamp value

 Access granted: When all processes send OK

10

Timestamp-based Algorithm

11

Timestamp-based Algorithm: Problems

 Requires 2(n-1) messages per access

 Any node becomes point of failure/bottleneck

 Dependent on all nodes

 Higher probability of failure than central algorithm

 Requires group communication

 Modifications:

 Get permission from majority of processes

 Get permission from overlapping subsets (~√n size)

12

Token Ring Algorithm

 Processes arranged in a ring

 Token passes around the ring

 Token holder has access to critical section

 If process wants to enter critical section:

 Wait for the token

 Enter the critical section while holding the token

 Pass on the token when done

 If process does not want to enter critical section:

 Pass the token to neighbour

4

13

Token Ring Algorithm: Properties

 Fairness: Each process gets chance in turn

 Worst-case wait: O(n)

 Problems:

 How to detect a lost token?

 What if a process crashes?

14

Mutual Exclusion Algorithms: Comparison

Algorithm
Messages per

entry/exit

Delay before
entry (no. of
messages)

Problems

Centralized 3 2
Coordinator

crash

Decentraliz
ed

2mk+m,
k=1,2,...

2mk
Starvation,
inefficiency

Timestamp 2 (n – 1) 2 (n – 1)
Crash of any

process

Token ring 1 to  0 to n – 1
Lost token,

Process crash

15

Leader Election

 Why do we need it?

 Many systems require a coordinator, monitor,
initiator, central server, etc.

 It may not matter who the leader is

 Examples?

16

Election Algorithms

 Goal: All processes must agree on the leader
after the election

 Choice of leader

 Process with the highest ID

 Process with desired properties, e.g.: resource
capacity, location, etc.

 Question: How do we determine the leader?

5

17

Bully Algorithm

 Process with highest ID “bullies” everyone into
accepting it as a leader

 Initiation:

 A process P sends ELECTION message to all
processes with higher ID’s

 If no one responds, P wins the election

 If someone responds, it takes over the election

 Last process remaining becomes the leader

 Sends a Victory message to everyone

18

Bully Algorithm: Initiation

19

Bully Algorithm: Leader Election

20

Bully Algorithm: Properties

 Assume n processes initially

 Worst Case:

 Smallest process initiates election

 Requires O(n2) messages

 Best Case:

 Eventual leader initiates election

 Requires (n-1) messages

6

21

Ring Algorithm

 Processes arranged in a ring

 Each process has a successor

 Initiation:

 A process sends an ELECTION message to its
successor (or next alive process) with its ID

 Each process adds its own ID and forwards the
ELECTION message

 Leader Election:

 Message comes back to initiator

 Initiator announces the winner by sending
another message around the ring

22

Ring Algorithm: Initiation

0 1

2

3

4

5

6

7

[4]

[4,5]

[4,5,6]

[4,5,6,0]

[4,5,6,0,1,2,3]

23

Ring Algorithm: Properties

 If only 1 process initiates election:

 Requires 2n messages

 Two or more processes might simultaneously
initiate elections

 Still ensures election of the same leader

 Results in extra messages

24

Election in Wireless Networks

 Restricted information

 Nodes do not know everyones’ identity

 Overall topology may not be known

 Want “best” node to be leader

 E.g.: most battery life, capacity, etc.

7

25

Election Tree

 Initiation:
 One node starts election

 Send ELECTION message to all neighbors

 On receiving ELECTION message:

 If first message, assign sender as parent

 Forward to all other neighbors

 Otherwise, ACK to sender

 Responding to parent:

 After getting ACKs from all neighbors

 Also pass on info on “best” downstream node

26

Election in P2P Systems

 Electing Superpeers

 Goals:

 Fixed proportion of total no. of nodes

 Even distribution across the overlay networks

 Load balanced

 Different solutions for:

 DHT networks

 Unstructured networks

Election in DHT Networks

 Goal: Reserve a fraction of the key space for
superpeers

 Use top k-bits to identify superpeers

 Superpeer for node p = Node responsible for
p&1...10...0 (first k bits 1)

 No. of superpeers ≈ 2k-m N

 m-bit key space, N total nodes

27

Election in Unstructured Networks

 Goal: Place N superpeers evenly across an m-
dimensional geometric space

 N tokens spread across N random nodes

 Each token exerts a repelling force

 Tokens move away from each other based on the
net force

 Gossipping used to spread the forces through the
network

 If the force on a token > threshold, move it away

 Superpeer: node that manages to hold a token
for a certain time duration

28

