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Distributed Mutual Exclusion 

 Multiple processes on different machines may 
need to access a critical section 

 Shared-memory systems: 

 Semaphores, mutexes, etc. 

 Typically implemented in shared memory 

 Processes share same blocking queues 

 How to implement mutual exclusion in 
distributed systems? 
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Centralized Algorithm 

 A coordinator grants access to critical section 

 Maintains a local queue 

 Can be elected using an election algorithm 

 A process sends request to coordinator 

 If nobody in critical section, grant access 

 Otherwise, put process in queue 

 When process done: 

 Send release to coordinator 

 Coordinator grants access to next process in queue 
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Centralized Algorithm 
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Centralized Algorithm: Properties 

 Simple and efficient: 

 Requires only 3 messages per request grant 

 No starvation or deadlock 

 Problem: 

 What happens when coordinator crashes? 
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Decentralized Algorithm: 
Replicated Coordinator 

 Have n replicas of the coordinator 

 A coordinator grants only one request at a time 

 Need to get a majority m of permissions 

 Otherwise backoff and retry after random time 

 Resource release: 

 Send release message to each of the m 
coordinators 
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Replicated Coordinator: Problems 

 Problem 1: What if a coordinator fails and 
resets its state? 

 Problem only if a majority fail at the same time: 
What are the chances? 

 Problem 2:What if there is a lot of resource 
contention? 
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Distributed Algorithm: 
Timestamp-based Algorithm 

 All events are totally ordered 

 To gain access: 

 Send a request to all processes with timestamp 

 On receipt of request: 

 If don’t care, send OK 

 If already in critical section, queue the request 

 If want to enter the critical section, compare 
timestamp of request to own request: Send OK 
or queue based on timestamp value 

 Access granted: When all processes send OK 
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Timestamp-based Algorithm 
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Timestamp-based Algorithm: Problems 

 Requires 2(n-1) messages per access 

 Any node becomes point of failure/bottleneck 

 Dependent on all nodes 

 Higher probability of failure than central algorithm 

 Requires group communication 

 Modifications: 

 Get permission from majority of processes 

 Get permission from overlapping subsets (~√n size) 
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Token Ring Algorithm 

 Processes arranged in a ring 

 Token passes around the ring 

 Token holder has access to critical section 

 If process wants to enter critical section: 

 Wait for the token 

 Enter the critical section while holding the token 

 Pass on the token when done 

 If process does not want to enter critical section: 

 Pass the token to neighbour 
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Token Ring Algorithm: Properties 

 Fairness: Each process gets chance in turn 

 Worst-case wait: O(n) 

 Problems: 

 How to detect a lost token? 

 What if a process crashes? 
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Mutual Exclusion Algorithms: Comparison 

Algorithm 
Messages per 

entry/exit 

Delay before 
entry (no. of 
messages) 

Problems 

Centralized 3 2 
Coordinator 

crash 

Decentraliz
ed 

2mk+m, 
k=1,2,... 

2mk 
Starvation, 
inefficiency 

Timestamp 2 ( n – 1 ) 2 ( n – 1 ) 
Crash of any 

process 

Token ring 1 to  0 to n – 1 
Lost token, 

Process crash 
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Leader Election 

 Why do we need it? 

 Many systems require a coordinator, monitor, 
initiator, central server, etc. 

 It may not matter who the leader is 

 Examples? 
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Election Algorithms 

 Goal: All processes must agree on the leader 
after the election 

 Choice of leader 

 Process with the highest ID 

 Process with desired properties, e.g.: resource 
capacity, location, etc. 

 Question: How do we determine the leader? 
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Bully Algorithm 

 Process with highest ID “bullies” everyone into 
accepting it as a leader 

 Initiation: 

 A process P sends ELECTION message to all 
processes with higher ID’s 

 If no one responds, P wins the election 

 If someone responds, it takes over the election 

 Last process remaining becomes the leader 

 Sends a Victory message to everyone 
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Bully Algorithm: Initiation 
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Bully Algorithm: Leader Election 
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Bully Algorithm: Properties 

 Assume n processes initially 

 Worst Case: 

 Smallest process initiates election 

 Requires O(n2) messages 

 Best Case: 

 Eventual leader initiates election 

 Requires (n-1) messages 
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Ring Algorithm 

 Processes arranged in a ring 

 Each process has a successor 

 Initiation: 

 A process sends an ELECTION message to its 
successor (or next alive process) with its ID 

 Each process adds its own ID and forwards the 
ELECTION message 

 Leader Election: 

 Message comes back to initiator 

 Initiator announces the winner by sending 
another message around the ring 
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Ring Algorithm: Initiation 
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Ring Algorithm: Properties 

 If only 1 process initiates election: 

 Requires 2n messages 

 Two or more processes might simultaneously 
initiate elections 

 Still ensures election of the same leader 

 Results in extra messages 
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Election in Wireless Networks 

 Restricted information 

 Nodes do not know everyones’ identity 

 Overall topology may not be known 

 Want “best” node to be leader 

 E.g.: most battery life, capacity, etc. 
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Election Tree 

 Initiation: 
 One node starts election  

 Send ELECTION message to all neighbors 

 On receiving ELECTION message: 

 If first message, assign sender as parent 

 Forward to all other neighbors 

 Otherwise, ACK to sender 

 Responding to parent: 

 After getting ACKs from all neighbors 

 Also pass on info on “best” downstream node 
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Election in P2P Systems 

 Electing Superpeers 

 Goals: 

 Fixed proportion of total no. of nodes 

 Even distribution across the overlay networks 

 Load balanced 

 Different solutions for: 

 DHT networks 

 Unstructured networks 

Election in DHT Networks 

 Goal: Reserve a fraction of the key space for 
superpeers 

 Use top k-bits to identify superpeers  

 Superpeer for node p = Node responsible for 
p&1...10...0 (first k bits 1) 

 No. of superpeers ≈ 2k-m N  

 m-bit key space, N total nodes 
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Election in Unstructured Networks 

 Goal: Place N superpeers evenly across an m-
dimensional geometric space 

 N tokens spread across N random nodes 

 Each token exerts a repelling force 

 Tokens move away from each other based on the 
net force 

 Gossipping used to spread the forces through the 
network  

 If the force on a token > threshold, move it away 

 Superpeer: node that manages to hold a token 
for a certain time duration 
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