CSCI 5105

Instructor: Abhishek Chandra

Today

= Distributed Mutual Exclusion
= Leader Election

Distributed Mutual Exclusion

= Multiple processes on different machines may
need to access a critical section

= Shared-memory systems:
= Semaphores, mutexes, etc.
= Typically implemented in shared memory
= Processes share same blocking queues

= How to implement mutual exclusion in
distributed systems?

Centralized Algorithm

= A coordinator grants access to critical section
= Maintains a local queue
= Can be elected using an election algorithm
= A process sends request to coordinator
= If nobody in critical section, grant access
= Otherwise, put process in queue
= When process done:
= Send release to coordinator
= Coordinator grants access to next process in queue




Centralized Algorithm
(o) (1) (2) (o) (1) (2) (o) (1) (2)
A Request Release] ¥
Request OK 4 !
Y fNo reply OK
(3) _ (3} (3]
< Queue is “2| g ‘ ‘
. empty
Coordinator
(@) (b) (©)

Centralized Algorithm: Properties

= Simple and efficient:

= Requires only 3 messages per request grant
= No starvation or deadlock
= Problem:

= What happens when coordinator crashes?

Decentralized Algorithm:
Replicated Coordinator

= Have n replicas of the coordinator

= A coordinator grants only one request at a time
= Need to get a majority m of permissions

= Otherwise backoff and retry after random time
= Resource release:

= Send release message to each of the m
coordinators

Replicated Coordinator: Problems

= Problem 1: What if a coordinator fails and
resets its state?
= Problem only if a majority fail at the same time:
What are the chances?
= Problem 2:What if there is a lot of resource
contention?




Distributed Algorithm:
Timestamp-based Algorithm

= All events are totally ordered
= TO gain access:

= Send a request to all processes with timestamp
= On receipt of request:

= If don't care, send OK

= If already in critical section, queue the request

= If want to enter the critical section, compare
timestamp of request to own request: Send OK
or queue based on timestamp value

= Access granted: When all processes send OK

Timestamp-based Algorithm

Enters
critical

8 region

-r — —

0 0 0

8/~ » 12 OK‘ ~» oK “ 0K
> B £ - - 4 Enters
1 — 2 - 1 > 2 1 2 ) critical
- 12 - - 0K — region
12
(a) (b) (e)

Timestamp-based Algorithm: Problems

Requires 2(n-1) messages per access
Any node becomes point of failure/bottleneck
= Dependent on all nodes
= Higher probability of failure than central algorithm
Requires group communication
Modifications:
= Get permission from majority of processes
= Get permission from overlapping subsets (~Vn size)

Token Ring Algorithm

= Processes arranged in a ring
= Token passes around the ring
= Token holder has access to critical section
= If process wants to enter critical section:
= Wait for the token
= Enter the critical section while holding the token
= Pass on the token when done
= If process does not want to enter critical section:
= Pass the token to neighbour




Token Ring Algorithm: Properties Mutual Exclusion Algorithms: Comparison
f . f Delay before
= Fairness: Each 'process gets chance in turn Algorithm Mes:ages Pter entry (no. of Problems
= Worst-case wait: O(n) entry/exi messages)
= Problems: Centralized 3 ) Coordinr?tor
= How to detect a lost token? cras
= What if a process crashes? Decentraliz 2mk+m, 2mk Starvation,
ed k=1,2,... inefficiency
) _ _ Crash of any
Timestamp 2(n-1) 2(n-1) process
Token ring 1tow Oton-1 PLOSt token,
rocess crash
Leader Election Election Algorithms
= Why do we need it? = Goal: All processes must agree on the leader
= Many systems require a coordinator, monitor, after the election
initiator, central server, etc. = Choice of leader
= It may not matter who the leader is = Process with the highest ID
= Examples? = Process with desired properties, e.g.: resource

capacity, location, etc.
= Question: How do we determine the leader?




Bully Algorithm

= Process with highest ID “bullies” everyone into
accepting it as a leader

= Initiation:

= A process P sends ELECTION message to all

processes with higher ID’s

= If no one responds, P wins the election

= If someone responds, it takes over the election
= Last process remaining becomes the leader

= Sends a Victory message to everyone

Bully Algorithm: Initiation

1 1

2] 5 2 ~ (s 2
v E\a@““-“" v ok .
- s -
Election 5, A oK s P
e% = - -
()
A 3 0 . 3 0
7 7

Previous coordinator
has crashed
(@) (&)

Bully Algorithm: Leader Election

} (5) [2) )
(2 (5) v
b ok *
4 (6) (4 - Coordinator L'e )
- L4
(o 3 (o] 3)
7 7))

(d) (e)

Bully Algorithm: Properties

= Assume n processes initially

= Worst Case:
= Smallest process initiates election
= Requires O(n2) messages

= Best Case:
= Eventual leader initiates election
= Requires (n-1) messages




Ring Algorithm

= Processes arranged in a ring
= Each process has a successor
= Initiation:

= A process sends an ELECTION message to its
successor (or next alive process) with its ID

= Each process adds its own ID and forwards the
ELECTION message
= Leader Election:
= Message comes back to initiator

= Initiator announces the winner by sending
another message around the ring

Ring Algorithm: Initiation

Ring Algorithm: Properties

= If only 1 process initiates election:
= Requires 2n messages
= Two or more processes might simultaneously
initiate elections
= Still ensures election of the same leader
= Results in extra messages

Election in Wireless Networks

= Restricted information
= Nodes do not know everyones’ identity
= Overall topology may not be known

= Want “best” node to be leader
= E.g.: most battery life, capacity, etc.




Election Tree

= Initiation:
= One node starts election
= Send ELECTION message to all neighbors
= On receiving ELECTION message:
= If first message, assign sender as parent
= Forward to all other neighbors
= Otherwise, ACK to sender
= Responding to parent:
= After getting ACKs from all neighbors
= Also pass on info on “best” downstream node

Election in P2P Systems

= Electing Superpeers
= Goals:
= Fixed proportion of total no. of nodes
= Even distribution across the overlay networks
= Load balanced
= Different solutions for:
= DHT networks
= Unstructured networks

Election in DHT Networks

= Goal: Reserve a fraction of the key space for
superpeers
= Use top k-bits to identify superpeers
= Superpeer for node p = Node responsible for
p&1...10...0 (first k bits 1)
= No. of superpeers = 2km N
= m-bit key space, N total nodes

Election in Unstructured Networks

= Goal: Place N superpeers evenly across an m-
dimensional geometric space

= N tokens spread across N random nodes

= Each token exerts a repelling force

= Tokens move away from each other based on the
net force

= Gossipping used to spread the forces through the
network
= If the force on a token > threshold, move it away
= Superpeer: node that manages to hold a token
for a certain time duration




