
1

CSCI 5105

Instructor: Abhishek Chandra

2

Today

 Distributed Mutual Exclusion

 Leader Election

3

Distributed Mutual Exclusion

 Multiple processes on different machines may
need to access a critical section

 Shared-memory systems:

 Semaphores, mutexes, etc.

 Typically implemented in shared memory

 Processes share same blocking queues

 How to implement mutual exclusion in
distributed systems?

4

Centralized Algorithm

 A coordinator grants access to critical section

 Maintains a local queue

 Can be elected using an election algorithm

 A process sends request to coordinator

 If nobody in critical section, grant access

 Otherwise, put process in queue

 When process done:

 Send release to coordinator

 Coordinator grants access to next process in queue

2

5

Centralized Algorithm

6

Centralized Algorithm: Properties

 Simple and efficient:

 Requires only 3 messages per request grant

 No starvation or deadlock

 Problem:

 What happens when coordinator crashes?

7

Decentralized Algorithm:
Replicated Coordinator

 Have n replicas of the coordinator

 A coordinator grants only one request at a time

 Need to get a majority m of permissions

 Otherwise backoff and retry after random time

 Resource release:

 Send release message to each of the m
coordinators

8

Replicated Coordinator: Problems

 Problem 1: What if a coordinator fails and
resets its state?

 Problem only if a majority fail at the same time:
What are the chances?

 Problem 2:What if there is a lot of resource
contention?

3

9

Distributed Algorithm:
Timestamp-based Algorithm

 All events are totally ordered

 To gain access:

 Send a request to all processes with timestamp

 On receipt of request:

 If don’t care, send OK

 If already in critical section, queue the request

 If want to enter the critical section, compare
timestamp of request to own request: Send OK
or queue based on timestamp value

 Access granted: When all processes send OK

10

Timestamp-based Algorithm

11

Timestamp-based Algorithm: Problems

 Requires 2(n-1) messages per access

 Any node becomes point of failure/bottleneck

 Dependent on all nodes

 Higher probability of failure than central algorithm

 Requires group communication

 Modifications:

 Get permission from majority of processes

 Get permission from overlapping subsets (~√n size)

12

Token Ring Algorithm

 Processes arranged in a ring

 Token passes around the ring

 Token holder has access to critical section

 If process wants to enter critical section:

 Wait for the token

 Enter the critical section while holding the token

 Pass on the token when done

 If process does not want to enter critical section:

 Pass the token to neighbour

4

13

Token Ring Algorithm: Properties

 Fairness: Each process gets chance in turn

 Worst-case wait: O(n)

 Problems:

 How to detect a lost token?

 What if a process crashes?

14

Mutual Exclusion Algorithms: Comparison

Algorithm
Messages per

entry/exit

Delay before
entry (no. of
messages)

Problems

Centralized 3 2
Coordinator

crash

Decentraliz
ed

2mk+m,
k=1,2,...

2mk
Starvation,
inefficiency

Timestamp 2 (n – 1) 2 (n – 1)
Crash of any

process

Token ring 1 to 0 to n – 1
Lost token,

Process crash

15

Leader Election

 Why do we need it?

 Many systems require a coordinator, monitor,
initiator, central server, etc.

 It may not matter who the leader is

 Examples?

16

Election Algorithms

 Goal: All processes must agree on the leader
after the election

 Choice of leader

 Process with the highest ID

 Process with desired properties, e.g.: resource
capacity, location, etc.

 Question: How do we determine the leader?

5

17

Bully Algorithm

 Process with highest ID “bullies” everyone into
accepting it as a leader

 Initiation:

 A process P sends ELECTION message to all
processes with higher ID’s

 If no one responds, P wins the election

 If someone responds, it takes over the election

 Last process remaining becomes the leader

 Sends a Victory message to everyone

18

Bully Algorithm: Initiation

19

Bully Algorithm: Leader Election

20

Bully Algorithm: Properties

 Assume n processes initially

 Worst Case:

 Smallest process initiates election

 Requires O(n2) messages

 Best Case:

 Eventual leader initiates election

 Requires (n-1) messages

6

21

Ring Algorithm

 Processes arranged in a ring

 Each process has a successor

 Initiation:

 A process sends an ELECTION message to its
successor (or next alive process) with its ID

 Each process adds its own ID and forwards the
ELECTION message

 Leader Election:

 Message comes back to initiator

 Initiator announces the winner by sending
another message around the ring

22

Ring Algorithm: Initiation

0 1

2

3

4

5

6

7

[4]

[4,5]

[4,5,6]

[4,5,6,0]

[4,5,6,0,1,2,3]

23

Ring Algorithm: Properties

 If only 1 process initiates election:

 Requires 2n messages

 Two or more processes might simultaneously
initiate elections

 Still ensures election of the same leader

 Results in extra messages

24

Election in Wireless Networks

 Restricted information

 Nodes do not know everyones’ identity

 Overall topology may not be known

 Want “best” node to be leader

 E.g.: most battery life, capacity, etc.

7

25

Election Tree

 Initiation:
 One node starts election

 Send ELECTION message to all neighbors

 On receiving ELECTION message:

 If first message, assign sender as parent

 Forward to all other neighbors

 Otherwise, ACK to sender

 Responding to parent:

 After getting ACKs from all neighbors

 Also pass on info on “best” downstream node

26

Election in P2P Systems

 Electing Superpeers

 Goals:

 Fixed proportion of total no. of nodes

 Even distribution across the overlay networks

 Load balanced

 Different solutions for:

 DHT networks

 Unstructured networks

Election in DHT Networks

 Goal: Reserve a fraction of the key space for
superpeers

 Use top k-bits to identify superpeers

 Superpeer for node p = Node responsible for
p&1...10...0 (first k bits 1)

 No. of superpeers ≈ 2k-m N

 m-bit key space, N total nodes

27

Election in Unstructured Networks

 Goal: Place N superpeers evenly across an m-
dimensional geometric space

 N tokens spread across N random nodes

 Each token exerts a repelling force

 Tokens move away from each other based on the
net force

 Gossipping used to spread the forces through the
network

 If the force on a token > threshold, move it away

 Superpeer: node that manages to hold a token
for a certain time duration

28

