
1

CSCI 5105

Instructor: Abhishek Chandra

Today

 Data-intensive computing

 Mapreduce

 Other models

2

Data-Intensive Computing

 Big Data: Large quantities of data being generated
 Commercial, social, scientific
 E.g.: Google, Facebook, LHC, ...

 Goal: Analyze and compute on this data

 Problems:

 Scale: PB’s of data, millions of files, 1000’s of nodes,
millions of users

 Cost: Using special purpose hardware may be too
expensive

 Reliability: Failures are common due to no. of
machines

Data-intensive Computing: Issues

 Data placement

 How to partition the data across nodes

 Task scheduling

 Where to execute computation tasks

 Fault tolerance

 How to handle node/task failures

4

2

MapReduce

 Simple data-parallel programming model and
framework

 Designed for scalability and fault-tolerance

 Uses commodity hardware clusters

MapReduce Computation

Input

Data

Data Push

Output

Data

Map Reduce

MapReduce Programming Model

 Data: Sequence of key-value records

 list(Kin, Vin)

 Map function: converts input key-value pairs to
intermediate key-value pairs

(Kin, Vin)  list(Kinter, Vinter)

 Reduce function: converts intermediate key-
value pairs to output key-value pairs

(Kinter, list(Vinter))  list(Kout, Vout)

Examples

 Wordcount:

 Count the number of occurrences of each word in
a set of text files

 Inverted Index:

 Find the set of files containing each word

8

3

MapReduce Execution

 Map: Input data chunks processed by mappers

 Mappers save outputs to local disk before serving
them to reducers

 Shuffle: Send intermediate data to reducers

 Intermediate key space partitioned across reducers

 All-to-all communication

 Reduce: Execute reduce function on intermediate
data

 Combine: Local aggregation function for repeated
keys produced by same map

System Components

 Distributed File System

 Combines cluster’s local storage into a single namespace

 Uses replication, provides locality information

 E.g.: GFS, HDFS

 Cluster Manager (JobTracker)

 Manages cluster resources and job scheduling

 Schedules tasks near data

 Local Agent (TaskTracker)

 Per-node agent

 Manage tasks

Resource Scheduling

 Each machine runs a certain number of mapper
and reducer processes

 Locality-aware scheduling:

 For each map task, prefer machine that has data
locally

 If not machine-local, then rack-local

11

Fault Tolerance

 Task re-execution: Retry task(s) on another
node

 On task or node failure

 OK for a mapper?

 OK for a reducer?

 Speculative execution: Launch copy of task on
another node

 To handle stragglers (slow tasks)

 Use result from first task to finish

12

4

Other Data-intensive Computing Models

 General computing frameworks:

 Dryad

 Spark

 Graph Processing

 Stream computing

13

Dryad

 More general than Mapreduce

 Job is a general DAG

 Vertices: functions or operators

 Edges: Dataflow

 Parallelism at each stage:

 Each vertex can be replicated (data partitioning)

 Can use different communication mechanisms

 Files, sockets, pipes, shared memory, etc.

14

Spark

 Distributed in-memory computation

 Partitions data across the memory of multiple nodes

 Resilient Distributed Datasets (RDD) abstraction

 Partitioned collection of records

 Maintains data lineage: set of transformations
applied to other datasets

 Well-suited for iterative and interactive processing

15

Graph Processing

 Suited for iterative graph computations

 GAS execution model

 Gather, Apply, Scatter

 Typically vertex-centric computations

 Uses message passing abstraction

 Graph partitioning across machines

 Could be optimized for typical graph characteristics

 Examples: Pregel, GraphLab

16

5

Stream Computing

 Operate on continuous data

 Both input and output are data streams

 DAG of operators applied on records as they come

 Latency is important metric

 Examples: Storm, Flink

17

