
1

CSCI 5105

Instructor: Abhishek Chandra

2

Today

 Distributed File Systems

3

Distributed File Systems

 Why do we need these?

 Data sharing in distributed systems

 Provide easy interface to users

 Hide distributed nature of data

 Distributed File Systems:

 Form the basis for several distributed systems

 Also illustrate various principles of distributed
systems

4

Distributed File Systems: Issues

 File Service
 What interface/operation is provided to users?

 How is data stored and fetched?

 Naming and location

 Where is a file located?

 How do different users refer to the same file?

 Sharing, caching and replication

 What happens for concurrent writes?

 How to tradeoff consistency-performance?

 Fault Tolerance and Security
 What if file server fails?

 How to authenticate remote users?

2

5

Distributed File Systems: Design

 Depends on the usage environment

 Scale of system

 Location of data

 Fault/security model of system

 Read/write patterns of users

6

Distributed File Systems: Examples

 NFS: Transparent user access to distributed data

 Coda: High availability in mobile environments

 GFS: Handle large files and data volumes

 PAST: Scalable archival system

7

Coda

 Main Goals:

 Availability: Work in the presence of disconnection

 Scalability: Support large number of users

 Successor of Andrew File System

 Developed at CMU

 Uses similar basic architecture

 Client-server architecture

8

Naming: Volumes

 Volume is a subtree in the naming space

 Like a disk partition, but finer granularity

 Mounting and replication takes place at volume
granularity

 Whole volume must be mounted from its root

 Crossing mount points allowed

3

9

Naming: Shared Name Space

 All clients see same shared name space
 All coda volumes are mounted under /coda

 Each mounted volume inherits name from server
namespace

coda coda

10

RPC2

 Coda runs on top of RPC2

 Enhanced version of RPC

 RPC2 supports

 Reliable RPC over UDP

 Side-effects: Application-specific modules called
by client and server stubs

 MultiRPC: Using parallel one-to-one RPCs or IP
multicast

11

Caching and Replication

 Client Caching

 Each file is completely transferred to the client on
access

 Combination of session and transactional
semantics

 Each session is considered to be a transaction

 Effect of each session applied sequentially

12

Consistency

 Server makes a callback promise

 Will notify when file is updated

 Callback break

 On file modification, server sends invalidation

 Session-transaction semantics

 Current session unaffected

 Client needs to download updated file before the
next session

4

13

Server Replication

 Volume Storage Group (VSG): Group of servers
holding a volume replica

 Available Volume Storage (AVSG): Members of
VSG connected to a client

 Update policy: Read-One, Write-All

 Performed on members of AVSG

14

Network Partitions

 Optimistic strategy: Commit changes to local
AVSGs

 Conflict detection: Use version vectors

 Conflict resolution: Application-dependent or
manual

15

Disconnected Operations

 Disconnected clients can operate on their local
copies

 Update propagation and conflict resolution done
on reconnection

 How does a user get a file if it is disconnected?

16

Hoarding

 Files are pre-cached on the client

 Files to be hoarded determined using priority

 Hoard database: Important files specified by user

 File recently referenced

 Files are fetched to ensure that:

 Higher priority files always cached first

 Get non-zero priority files if cache has space

 Hoard walk: Reorganizing the cache periodically
to meet above requirements

5

17

Hoarding: Transitions

18

Google File System (GFS)

 Main Goals:

 Scalability: Large amount of data

 Performance: High rate of distributed processing

 Fault-tolerance: Server failures common

19

Google File Characteristics

 File sizes very large

 Generally a collection of crawled documents

 Several MB-GBs

 Processing:

 Dumping crawled content

 Parsing files, building indices

Google File System Requirements

 Built from commodity hardware

 Modest no. of very large files

 File reads:

 Large sequential reads

 Small random reads

 File writes:

 Large, sequential appends

 Many concurrent appends

 High bandwidth rather than low latency

20

6

21

Google Server Cluster

 Each cluster maintains some files

 Each file divided into chunks

 Chunk has a global handle

 One master and multiple chunk servers

22

Google Server Cluster

 Multiple chunk servers

 Each maintains one chunk of the file

 Chunk maintained on local FS

 Master

 Responsible for naming

 Maintains metadata

 Location of <filename, chunk index>

Client File Access

 Client maps file offset into chunk index

 Master sends chunk handle and chunk server
locations to client

 Client reads chunk directly from chunk server

23

Reliability and Consistency:
Chunk Data

 Each chunk is replicated

 Updates performed using a primary-backup
scheme

 Server grants lease to a chunkserver to become
primary replica

 Data disseminated separately from update
control flow

 Caching: No caching on client or chunk server

24

7

25

Replication and Consistency:
MetaData

 Master keeps information in main memory

 Naming index of chunks

 Updated by polling chunk servers from time-to-time

 Could have stale information

 Critical metadata changes

 Logged to an operational log

 Reconstructed by log replay

 Checkpointing from time-to-time

