
1

CSCI 5105

Instructor: Abhishek Chandra

2

Today

 Distributed File Systems

3

Distributed File Systems

 Why do we need these?

 Data sharing in distributed systems

 Provide easy interface to users

 Hide distributed nature of data

 Distributed File Systems:

 Form the basis for several distributed systems

 Also illustrate various principles of distributed
systems

4

Distributed File Systems: Issues

 File Service
 What interface/operation is provided to users?

 How is data stored and fetched?

 Naming and location

 Where is a file located?

 How do different users refer to the same file?

 Sharing, caching and replication

 What happens for concurrent writes?

 How to tradeoff consistency-performance?

 Fault Tolerance and Security
 What if file server fails?

 How to authenticate remote users?

2

5

Distributed File Systems: Design

 Depends on the usage environment

 Scale of system

 Location of data

 Fault/security model of system

 Read/write patterns of users

6

Distributed File Systems: Examples

 NFS: Transparent user access to distributed data

 Coda: High availability in mobile environments

 GFS: Handle large files and data volumes

 PAST: Scalable archival system

7

Coda

 Main Goals:

 Availability: Work in the presence of disconnection

 Scalability: Support large number of users

 Successor of Andrew File System

 Developed at CMU

 Uses similar basic architecture

 Client-server architecture

8

Naming: Volumes

 Volume is a subtree in the naming space

 Like a disk partition, but finer granularity

 Mounting and replication takes place at volume
granularity

 Whole volume must be mounted from its root

 Crossing mount points allowed

3

9

Naming: Shared Name Space

 All clients see same shared name space
 All coda volumes are mounted under /coda

 Each mounted volume inherits name from server
namespace

coda coda

10

RPC2

 Coda runs on top of RPC2

 Enhanced version of RPC

 RPC2 supports

 Reliable RPC over UDP

 Side-effects: Application-specific modules called
by client and server stubs

 MultiRPC: Using parallel one-to-one RPCs or IP
multicast

11

Caching and Replication

 Client Caching

 Each file is completely transferred to the client on
access

 Combination of session and transactional
semantics

 Each session is considered to be a transaction

 Effect of each session applied sequentially

12

Consistency

 Server makes a callback promise

 Will notify when file is updated

 Callback break

 On file modification, server sends invalidation

 Session-transaction semantics

 Current session unaffected

 Client needs to download updated file before the
next session

4

13

Server Replication

 Volume Storage Group (VSG): Group of servers
holding a volume replica

 Available Volume Storage (AVSG): Members of
VSG connected to a client

 Update policy: Read-One, Write-All

 Performed on members of AVSG

14

Network Partitions

 Optimistic strategy: Commit changes to local
AVSGs

 Conflict detection: Use version vectors

 Conflict resolution: Application-dependent or
manual

15

Disconnected Operations

 Disconnected clients can operate on their local
copies

 Update propagation and conflict resolution done
on reconnection

 How does a user get a file if it is disconnected?

16

Hoarding

 Files are pre-cached on the client

 Files to be hoarded determined using priority

 Hoard database: Important files specified by user

 File recently referenced

 Files are fetched to ensure that:

 Higher priority files always cached first

 Get non-zero priority files if cache has space

 Hoard walk: Reorganizing the cache periodically
to meet above requirements

5

17

Hoarding: Transitions

18

Google File System (GFS)

 Main Goals:

 Scalability: Large amount of data

 Performance: High rate of distributed processing

 Fault-tolerance: Server failures common

19

Google File Characteristics

 File sizes very large

 Generally a collection of crawled documents

 Several MB-GBs

 Processing:

 Dumping crawled content

 Parsing files, building indices

Google File System Requirements

 Built from commodity hardware

 Modest no. of very large files

 File reads:

 Large sequential reads

 Small random reads

 File writes:

 Large, sequential appends

 Many concurrent appends

 High bandwidth rather than low latency

20

6

21

Google Server Cluster

 Each cluster maintains some files

 Each file divided into chunks

 Chunk has a global handle

 One master and multiple chunk servers

22

Google Server Cluster

 Multiple chunk servers

 Each maintains one chunk of the file

 Chunk maintained on local FS

 Master

 Responsible for naming

 Maintains metadata

 Location of <filename, chunk index>

Client File Access

 Client maps file offset into chunk index

 Master sends chunk handle and chunk server
locations to client

 Client reads chunk directly from chunk server

23

Reliability and Consistency:
Chunk Data

 Each chunk is replicated

 Updates performed using a primary-backup
scheme

 Server grants lease to a chunkserver to become
primary replica

 Data disseminated separately from update
control flow

 Caching: No caching on client or chunk server

24

7

25

Replication and Consistency:
MetaData

 Master keeps information in main memory

 Naming index of chunks

 Updated by polling chunk servers from time-to-time

 Could have stale information

 Critical metadata changes

 Logged to an operational log

 Reconstructed by log replay

 Checkpointing from time-to-time

