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Today 

 Distributed File Systems 
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Distributed File Systems 

 Why do we need these? 

 Data sharing in distributed systems 

 Provide easy interface to users 

 Hide distributed nature of data 

 Distributed File Systems: 

 Form the basis for several distributed systems 

 Also illustrate various principles of distributed 
systems 
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Distributed File Systems: Issues 

 File Service 
 What interface/operation is provided to users? 

 How is data stored and fetched? 

 Naming and location 

 Where is a file located?  

 How do different users refer to the same file? 

 Sharing, caching and replication 

 What happens for concurrent writes? 

 How to tradeoff consistency-performance? 

 Fault Tolerance and Security 
 What if file server fails? 

 How to authenticate remote users? 
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Distributed File Systems: Design 

 Depends on the usage environment 

 Scale of system 

 Location of data 

 Fault/security model of system 

 Read/write patterns of users 
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Distributed File Systems: Examples 

 NFS: Transparent user access to distributed data 

 Coda: High availability in mobile environments 

 GFS: Handle large files and data volumes 

 PAST: Scalable archival system 
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Coda 

 Main Goals:  

 Availability: Work in the presence of disconnection 

 Scalability: Support large number of users 

 Successor of Andrew File System 

 Developed at CMU 

 Uses similar basic architecture 

 Client-server architecture 
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Naming: Volumes 

 Volume is a subtree in the naming space 

 Like a disk partition, but finer granularity 

 Mounting and replication takes place at volume 
granularity 

 Whole volume must be mounted from its root 

 Crossing mount points allowed 
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Naming: Shared Name Space 

 All clients see same shared name space 
 All coda volumes are mounted under /coda 

 Each mounted volume inherits name from server 
namespace 

coda coda 
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RPC2 

 Coda runs on top of RPC2 

 Enhanced version of RPC 

 RPC2 supports 

 Reliable RPC over UDP 

 Side-effects: Application-specific modules called 
by client and server stubs 

 MultiRPC: Using parallel one-to-one RPCs or IP 
multicast 
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Caching and Replication 

 Client Caching 

 Each file is completely transferred to the client on 
access 

 Combination of session and transactional 
semantics 

 Each session is considered to be a transaction 

 Effect of each session applied sequentially 
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Consistency 

 Server makes a callback promise 

 Will notify when file is updated 

 Callback break 

 On file modification, server sends invalidation 

 Session-transaction semantics 

 Current session unaffected 

 Client needs to download updated file before the 
next session 
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Server Replication 

 Volume Storage Group (VSG): Group of servers 
holding a volume replica 

 Available Volume Storage (AVSG): Members of 
VSG connected to a client 

 Update policy: Read-One, Write-All 

 Performed on members of AVSG  
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Network Partitions 

 Optimistic strategy: Commit changes to local 
AVSGs 

 Conflict detection: Use version vectors  

 Conflict resolution: Application-dependent or 
manual 
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Disconnected Operations 

 Disconnected clients can operate on their local 
copies 

 Update propagation and conflict resolution done 
on reconnection 

 How does a user get a file if it is disconnected? 
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Hoarding 

 Files are pre-cached on the client 

 Files to be hoarded determined using priority 

 Hoard database: Important files specified by user 

 File recently referenced 

 Files are fetched to ensure that: 

 Higher priority files always cached first 

 Get non-zero priority files if cache has space 

 Hoard walk: Reorganizing the cache periodically 
to meet above requirements 
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Hoarding: Transitions 
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Google File System (GFS) 

 Main Goals: 

 Scalability: Large amount of data 

 Performance: High rate of distributed processing 

 Fault-tolerance: Server failures common 
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Google File Characteristics 

 File sizes very large 

 Generally a collection of crawled documents 

 Several MB-GBs 

 Processing: 

 Dumping crawled content 

 Parsing files, building indices 

 

 

Google File System Requirements 

 Built from commodity hardware 

 Modest no. of very large files 

 File reads: 

 Large sequential reads 

 Small random reads 

 File writes:  

 Large, sequential appends 

 Many concurrent appends 

 High bandwidth rather than low latency 
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Google Server Cluster 

 Each cluster maintains some files 

 Each file divided into chunks 

 Chunk has a global handle 

 One master and multiple chunk servers 
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Google Server Cluster 

 Multiple chunk servers 

 Each maintains one chunk of the file 

 Chunk maintained on local FS 

 Master 

 Responsible for naming 

 Maintains metadata 

 Location of <filename, chunk index> 

 

Client File Access 

 Client maps file offset into chunk index 

 Master sends chunk handle and chunk server 
locations to client 

 Client reads chunk directly from chunk server 
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Reliability and Consistency: 
Chunk Data 

 Each chunk is replicated 

 Updates performed using a primary-backup 
scheme 

 Server grants lease to a chunkserver to become 
primary replica 

 Data disseminated separately from update 
control flow 

 Caching: No caching on client or chunk server 
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Replication and Consistency: 
MetaData 

 Master keeps information in main memory  

 Naming index of chunks 

 Updated by polling chunk servers from time-to-time 

 Could have stale information 

 Critical metadata changes 

 Logged to an operational log 

 Reconstructed by log replay 

 Checkpointing from time-to-time 

 


