
1

CSCI 5105

Instructor: Abhishek Chandra

2

Today

 Data Consistency

 Consistency Protocols

3

Consistency Protocols

 Implementation of a consistency model

 How do we order operations according to a
consistency model?

 How are multiple writes applied and propagated
to different replicas?

4

Consistency Protocols

 Ordering-based Consistency Protocols

 Maintain desired ordering of operations

 Continuous Consistency Protocols

 Bound numerical deviation or staleness

 Client-Centric Consistency Protocols

 Provide consistent view to individual clients

2

5

Ordering-based Consistency Protocols

 Primary-based Protocols

 Each data item has a primary replica

 Replication-based Protocols

 Operations can be carried out at multiple replicas

6

Primary-based Protocols

 Each data item has a primary replica

 All writes are applied to and coordinated by the
primary

 Two types:

 Remote-Write: The primary is fixed and remote

 Local-Write: The primary is copied locally before
applying writes

7

Remote-Write

 Reads done locally, writes sent to primary

 A write is complete only when all backups have
updated

 Problems?

Client 1 Client 2

Replica 2 Replica 1

Primary
W1

W2
W3

W3

W4 W4

W5 R1 R2

8

Local-Write

 Primary is migrated before performing writes

 Multiple copies of data item: reads done locally

 Updates propagated to other replicas

 Example: Mobile computing

Client 1 Client 2

Replica 2 Replica 1

Primary
W1

W2

Move Primary

Update

W3 R1 R2

Update

3

9

Replicated-Write Protocols

 No single primary copy

 Writes can be performed at multiple replicas

 Two types:

 Active Replication: All operations are forwarded
to all replicas

 Quorum-based: Operations are forwarded to a
subset of all replicas

10

Active Replication

 All write operations are propagated to all
replicas

 Must be applied in the same order

 Need total ordering of writes

 Use Lamport timestamps

 Central sequencer

11

Quorum-Based Protocols

 Operations are sent to a subset of replicas

 Maintaining consistency

 Use voting

 If a quorum (e.g.: majority) agrees, then,
consistency is maintained

 Write: Apply write only if majority of replicas
agree on the update

 Read: Perform read from the latest version
among a majority of replicas

12

Gifford’s Quorum-Based Protocol

 N replicas

 Read quorum: Need NR replicas to agree

 Write quorum: Need NW replicas to agree

 Need to satisfy:

 NR + NW > N (Avoid read-write conflicts)

 NW > N/2 (Avoid write-write conflicts)

4

13

Gifford’s Quorum-Based Protocol

14

Continuous Consistency:
Bounding Numerical Deviation

 Each update originates at one replica

 Each update has a numerical value (weight)

 Each replica i maintains

 TW[i,i]: Total weight of its local updates

 TW[i,j]: Total weight of other replicas’ updates

 TWi[k,j]: View of other replicas’ total weights

 Epidemic protocol:

 Update total weight of replica k if exceeds bound

 Update local view of k’s total weights

15

Continuous Consistency:
Bounding Staleness

 Each replica i maintains a real-time vector clock

 RVCi[k]=t

 t is the time of last update on k seen by i

 Pull-based protocol:

 If (curr-time - RVCi[k])> δ then pull update from
replica k

Client-Centric Consistency

 Want to propagate updates in a client-centric
manner

 Each write assigned a global identifier at the
origin server

 For each client, two sets of writes:

 Read set: Writes relevant to the client’s reads

 Write set: Writes performed by the client

 Different models implemented using these sets

 Updates from either set either propagated locally
or client requests are sent to an updated server

16

5

Implementing Different
Consistency Models

 Monotonic reads:

 When a client issues a read, the local replica will
first update with the Read set of client

 Client’s Read set is updated with any subsequent
local writes that affect the Read operation

 Monotonic writes:

 When a client issues a write, the local replica will
first update with the Write set of client

 The write is added to the client’s Write set

17

Optimizations

 Problem 1: Read and write sets can become
very large

 Session: Group of read/write operations when
user is active

 Discard reads/writes from earlier sessions

 Problem 2: The set representation is wasteful

 Use vector timestamps for the write operations

 Only pass around vector timestamps (not whole
set)

18

