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Today

= Data Replication

= Examples and Issues
= Data Consistency

= Consistency Models

Data Replication

= Using multiple copies of same data
= Why do we need data replication?

Example: Distributed Shared Memory

= Multiprocessor system with per-CPU cache
= Different caches may hold same cache line
= Why do we need replication?
= What happens when a CPU writes a data item?
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Example: DNS

= Each zone has multiple replicas
= One primary and other secondary
= Other servers/clients may cache data
= Why do we need replication?
= What happens if name resolution changes?

Example: Web Caching

= Server is primary replica
= Web pages are cached at:
= Server replicas
= Client browsers
= Proxy caches
= Content-distributions networks (CDNs)
= Why do we need replication?
= What happens when a Web page changes?
= What about stock tickers, live sports scores,
weather reports?

Data Replication: Issues

= What happens if multiple processes write
concurrently?

= How do we propagate updates to all replicas?
= What is the cost of updation/consistency?

Data Consistency

= How do we define “consistency”?

= What level of consistency is required in case of:
= DSM?
= DNS?
= Web caching?




Consistency Models
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Distributed data store

= “Contract” between processes and data store
= “Guarantees” on the view of data store visible to
each process
= What writes will be visible to whom and when?

Consistency Models

= Data-centric consistency models
= How to provide consistent views of the data store
to all replicas?
= Typically assumes multiple concurrent writes/reads
= Client-centric consistency models
= How to provide consistent views of the data store
to a client?
= Typically assumes limited concurrent writes, but
client can move

Data-Centric Consistency Models

= Defined in terms of the values stored in the
replicas
= How much can the values differ from each other?

= Consistency can be defined in terms of:
= Ordering of reads/writes
= Deviation in numerical values or staleness of
replicas

Ordering-based Consistency

= Different processes read and write to replicas of
shared data concurrently

= What ordering will these reads and writes
appear to different processes?




Strict Consistency

= Any read to x returns the most recent write to x
= Assumes notion of absolute global time
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= Is it feasible in a distributed system?

Sequential Consistency

= All processes see the same sequence of
operations
= Each process’s operations appear in program order
= Any valid interleaving of multiple process
operations
= No notion of absolute time
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Causal Consistency

= Causally related writes must be seen in the
same order by all processes
= Concurrent writes can be seen in any order
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FIFO Consistency

= All writes from a process are seen in the same
order by all processes
= Order is the order of issue

Writes by different processes may be seen in
different order
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Synchronization-based Consistency

= Many processes access shared data inside critical
sections

= Do not care about all reads/writes to be consistent

= Only require values to be consistent at beginning
and end of critical sections

= Do not need to pass intermediate updates

= Synchronization variables (or locks) used to
trigger data synchronizations
= Makes all copies consistent

Weak Consistency

= At synchronization:
= All local writes are flushed out everywhere
= All remote writes are gathered in
= All accesses to synchronization variables are
sequentially consistent
= Ensures sequential consistency on groups of
operations
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Other Synchronization-based
Consistency Models

= Release Consistency:

= Separate synchronization operations for entry
and exit from critical sections

= Gather remote writes on entry (acquire), flush
out local writes on exit (release)

= Entry Consistency:
= Separate synchronization variable for each data
item
= Avoids false sharing, multiple non-overlapping
critical sections

Summary of Ordering-based Data-
Centric Consistency Models

= Strict: Absolute time-based

= Sequential: All processes see same order of
operations

= Causal: Causally-related operations in same order
= FIFO: Ordered per-process basis

= Synchronization-based: Flush/gather at each
synchronization




Continuous Consistency

= Consistency defined as a bound on deviations
between replicas
= Bound on a continuous scale
= Could be numerical, time-based

= Conit: Consistency unit
= Data unit over which consistency is defined
= E.g.: Individual stocks in a stockticker, OR, whole

set of stocks in an index

= What is the tradeoff between having a fine-

grained vs. coarse-grained conit?

Continuous Consistency - Deviations

= Inconsistencies between replicas are measured
in terms of deviations
= Numerical deviation: If data is numerical
= Absolute or relative
= Number of updates: Referred to as “weight”
= Staleness: How fresh is a replica?
= Must be updated with certain frequency

Eventual Consistency

= In absence of updates, all replicas converge
towards identical copies

= Applied to a replicated data store with few
updaters and many readers

= Only requirement: an update should eventually
propagate to all replicas
= Nothing assumed about the timeliness of update
propagation
= Cheap to implement
= E.g.: Web, DNS

Client-Centric View of Data

= A client may only care about the data it is
reading and writing

= E.g.: a user may only care about the posts on
their Facebook wall

= These should be in consistent order. Can use:
= Data-centric consistency models. Problem?
= Eventual consistency model. Problem?




Client-Centric Consistency Models

= Defined in terms of the values seen by a single
client at different replicas
= Assume: a client can move between replicas
= Useful for:
= Mobile applications
= Applications with multiple access points, e.g.: email
= Ordering-based consistency:
= In what order will a single client see its reads and
writes on different replicas?
= Different combinations based on read vs. write
ordering

Monotonic Reads

= If a process reads a value of x, any successive
read of x by it will return the same or a more
recent value
= E.g.: Reading the posts from different locations

L1 WI(x1)R1(x1) L1 W1(x1)R1(x1)

L2 W2(x1;x2) R1(x2) L2 W2(xi|x2) R1(x2)

Monotonic Writes

= If @ process writes to x, this write will be
completed before any successive write to x by it
= E.g.: All outgoing posts from different locations

L1 W1(x1) L1 Wi(x1)

L2 W2(x1;x2) W1(x2;x3) L2 W2(x1|x2) W1(x1|x3)

L1 W1(x1) L1 Wi(x1)

L2 W2(x1]x2) W1(x2;x3) L2 W2(x1|x2) W1(x1;x3)

Read Your Writes

= A write to x by a process will always be seen by a
successive read of x by it
= E.g.: You can see your earlier posts

L1 W1(x1) L1 Wi(x1)

L2 W2(x1; x2) R1(x2) L2 W2(x1|x2) R1(x2)




Writes Follow Reads

= If a process reads a value of x, any successive
write to x by it will take place on the same or a
more recent value
= Your post will reflect any postings you've read
earlier

L1 Wi(x1) R2(x1) L1 Wi(x1) R2(x1)

L2 W3(x1;x2) W2(x2;x3) L2 W3(x1]x2) W2(x1|x2)

Summary of Client-Centric

Consistency Models

Read first

Write first

Read next Monotonic Reads

Read Your Writes

Write next | Writes Follow Reads

Monotonic Writes




