
1

CSCI 5105

Instructor: Abhishek Chandra

2

Today

 Data Replication

 Examples and Issues

 Data Consistency

 Consistency Models

3

Data Replication

 Using multiple copies of same data

 Why do we need data replication?

4

Example: Distributed Shared Memory

 Multiprocessor system with per-CPU cache

 Different caches may hold same cache line

 Why do we need replication?

 What happens when a CPU writes a data item?

2

5

Example: DNS

 Each zone has multiple replicas

 One primary and other secondary

 Other servers/clients may cache data

 Why do we need replication?

 What happens if name resolution changes?

6

Example: Web Caching

 Server is primary replica

 Web pages are cached at:

 Server replicas

 Client browsers

 Proxy caches

 Content-distributions networks (CDNs)

 Why do we need replication?

 What happens when a Web page changes?

 What about stock tickers, live sports scores,
weather reports?

7

Data Replication: Issues

 What happens if multiple processes write
concurrently?

 How do we propagate updates to all replicas?

 What is the cost of updation/consistency?

8

Data Consistency

 How do we define “consistency”?

 What level of consistency is required in case of:

 DSM?

 DNS?

 Web caching?

3

9

Consistency Models

 “Contract” between processes and data store

 “Guarantees” on the view of data store visible to
each process

 What writes will be visible to whom and when?

10

Consistency Models

 Data-centric consistency models

 How to provide consistent views of the data store
to all replicas?

 Typically assumes multiple concurrent writes/reads

 Client-centric consistency models

 How to provide consistent views of the data store
to a client?

 Typically assumes limited concurrent writes, but
client can move

11

Data-Centric Consistency Models

 Defined in terms of the values stored in the
replicas

 How much can the values differ from each other?

 Consistency can be defined in terms of:

 Ordering of reads/writes

 Deviation in numerical values or staleness of
replicas

12

Ordering-based Consistency

 Different processes read and write to replicas of
shared data concurrently

 What ordering will these reads and writes
appear to different processes?

4

13

Strict Consistency

 Any read to x returns the most recent write to x
 Assumes notion of absolute global time

 Is it feasible in a distributed system?

P1

P2

W(x)a

R(x)a R(x)a

P1

P2

W(x)a

R(x)NIL

P1

P2

W(x)a

R(x)b

W(x)b P1

P2

W(x)a

R(x)a

W(x)b

R(x)a

14

Sequential Consistency

 All processes see the same sequence of
operations

 Each process’s operations appear in program order

 Any valid interleaving of multiple process
operations

 No notion of absolute time

15

Causal Consistency

 Causally related writes must be seen in the
same order by all processes

 Concurrent writes can be seen in any order

a b

y

y

y

?

?

16

FIFO Consistency

 All writes from a process are seen in the same
order by all processes

 Order is the order of issue

 Writes by different processes may be seen in
different order

P1

P2

W(x)a

R(x)a W(x)b

P3

P4

R(x)a

W(x)c

R(x)b R(x)c

R(x)b R(x)a R(x)c

5

17

Synchronization-based Consistency

 Many processes access shared data inside critical
sections

 Do not care about all reads/writes to be consistent

 Only require values to be consistent at beginning
and end of critical sections

 Do not need to pass intermediate updates

 Synchronization variables (or locks) used to
trigger data synchronizations

 Makes all copies consistent

18

Weak Consistency

 At synchronization:

 All local writes are flushed out everywhere

 All remote writes are gathered in

 All accesses to synchronization variables are
sequentially consistent

 Ensures sequential consistency on groups of
operations

P1

P2

W(x)a W(x)b

P3 R(x)a R(x)b S

S

R(x)b R(x)a S

R(x)b

R(x)b

19

Other Synchronization-based
Consistency Models

 Release Consistency:

 Separate synchronization operations for entry
and exit from critical sections

 Gather remote writes on entry (acquire), flush
out local writes on exit (release)

 Entry Consistency:

 Separate synchronization variable for each data
item

 Avoids false sharing, multiple non-overlapping
critical sections

20

Summary of Ordering-based Data-
Centric Consistency Models

 Strict: Absolute time-based

 Sequential: All processes see same order of
operations

 Causal: Causally-related operations in same order

 FIFO: Ordered per-process basis

 Synchronization-based: Flush/gather at each
synchronization

6

21

Continuous Consistency

 Consistency defined as a bound on deviations
between replicas

 Bound on a continuous scale

 Could be numerical, time-based

 Conit: Consistency unit

 Data unit over which consistency is defined

 E.g.: Individual stocks in a stockticker, OR, whole
set of stocks in an index

 What is the tradeoff between having a fine-
grained vs. coarse-grained conit?

22

Continuous Consistency - Deviations

 Inconsistencies between replicas are measured
in terms of deviations

 Numerical deviation: If data is numerical

 Absolute or relative

 Number of updates: Referred to as “weight”

 Staleness: How fresh is a replica?

 Must be updated with certain frequency

23

Eventual Consistency

 In absence of updates, all replicas converge
towards identical copies

 Applied to a replicated data store with few
updaters and many readers

 Only requirement: an update should eventually
propagate to all replicas

 Nothing assumed about the timeliness of update
propagation

 Cheap to implement

 E.g.: Web, DNS

Client-Centric View of Data

 A client may only care about the data it is
reading and writing

 E.g.: a user may only care about the posts on
their Facebook wall

 These should be in consistent order. Can use:

 Data-centric consistency models. Problem?

 Eventual consistency model. Problem?

24

7

25

Client-Centric Consistency Models

 Defined in terms of the values seen by a single
client at different replicas

 Assume: a client can move between replicas

 Useful for:

 Mobile applications

 Applications with multiple access points, e.g.: email

 Ordering-based consistency:

 In what order will a single client see its reads and
writes on different replicas?

 Different combinations based on read vs. write
ordering

Monotonic Reads

 If a process reads a value of x, any successive
read of x by it will return the same or a more
recent value

 E.g.: Reading the posts from different locations

26

L1

L2

W1(x1)

W2(x1;x2) R1(x2)

R1(x1) L1

L2

W1(x1)

W2(x1|x2) R1(x2)

R1(x1)

Monotonic Writes

 If a process writes to x, this write will be
completed before any successive write to x by it

 E.g.: All outgoing posts from different locations

27

L1

L2 W2(x1;x2) W1(x2;x3)

W1(x1) L1

L2 W2(x1|x2) W1(x1|x3)

W1(x1)

L1

L2 W2(x1|x2) W1(x2;x3)

W1(x1) L1

L2 W2(x1|x2) W1(x1;x3)

W1(x1)

Read Your Writes

 A write to x by a process will always be seen by a
successive read of x by it

 E.g.: You can see your earlier posts

28

L1

L2 W2(x1; x2) R1(x2)

W1(x1) L1

L2 R1(x2)

W1(x1)

W2(x1|x2)

8

Writes Follow Reads

 If a process reads a value of x, any successive
write to x by it will take place on the same or a
more recent value

 Your post will reflect any postings you’ve read
earlier

29

L1

L2

W1(x1)

W3(x1;x2) W2(x2;x3)

R2(x1) L1

L2

W1(x1)

W3(x1|x2) W2(x1|x2)

R2(x1)

Summary of Client-Centric
Consistency Models

30

Read first Write first

Read next Monotonic Reads Read Your Writes

Write next Writes Follow Reads Monotonic Writes

