CSCI 5105

Instructor: Abhishek Chandra

Today

= Data Replication

= Examples and Issues
= Data Consistency

= Consistency Models

Data Replication

= Using multiple copies of same data
= Why do we need data replication?

Example: Distributed Shared Memory

= Multiprocessor system with per-CPU cache
= Different caches may hold same cache line
= Why do we need replication?
= What happens when a CPU writes a data item?

CPU cPU CPU Memory
‘ CEChE‘ ‘ Cache| ‘ Cache‘

Example: DNS

= Each zone has multiple replicas
= One primary and other secondary
= Other servers/clients may cache data
= Why do we need replication?
= What happens if name resolution changes?

Example: Web Caching

= Server is primary replica
= Web pages are cached at:
= Server replicas
= Client browsers
= Proxy caches
= Content-distributions networks (CDNs)
= Why do we need replication?
= What happens when a Web page changes?
= What about stock tickers, live sports scores,
weather reports?

Data Replication: Issues

= What happens if multiple processes write
concurrently?

= How do we propagate updates to all replicas?
= What is the cost of updation/consistency?

Data Consistency

= How do we define “consistency”?

= What level of consistency is required in case of:
= DSM?
= DNS?
= Web caching?

Consistency Models

Process Process Process
A i A Local copy
f s.:__} \vjl F ¥ /‘ -
. - -
A

Distributed data store

= “Contract” between processes and data store
= “Guarantees” on the view of data store visible to
each process
= What writes will be visible to whom and when?

Consistency Models

= Data-centric consistency models
= How to provide consistent views of the data store
to all replicas?
= Typically assumes multiple concurrent writes/reads
= Client-centric consistency models
= How to provide consistent views of the data store
to a client?
= Typically assumes limited concurrent writes, but
client can move

Data-Centric Consistency Models

= Defined in terms of the values stored in the
replicas
= How much can the values differ from each other?

= Consistency can be defined in terms of:
= Ordering of reads/writes
= Deviation in numerical values or staleness of
replicas

Ordering-based Consistency

= Different processes read and write to replicas of
shared data concurrently

= What ordering will these reads and writes
appear to different processes?

Strict Consistency

= Any read to x returns the most recent write to x
= Assumes notion of absolute global time

PL W(x)a

P1 W(x)a

P2 R(x)a

R(x)a

P1 W(x)a W(x)b

P2 R(X)NIL R(x)a

P1 W(x)a W(x)b

P2

R(X)b

P2 R(x)a

= Is it feasible in a distributed system?

Sequential Consistency

= All processes see the same sequence of
operations
= Each process’s operations appear in program order
= Any valid interleaving of multiple process
operations
= No notion of absolute time

P1: Wix)a

P2 Wix)b

P3: R{x)b R(x)a
P4: R(x)b R(x)a

@

Causal Consistency

= Causally related writes must be seen in the
same order by all processes
= Concurrent writes can be seen in any order

P1: W(x)a P1: Wix)a

P2 Rixja Wxb P2 Rixja Wxb

P3 R(x)a Rix)b P3 R(xb R(x)a
P4 R(x)a Rix)b P4 R(x)a R(x)b
P1: Wikja Pt Wixa

P2 Wix)b P2 Rila Wyb

P3 R(x)b Rfx)a P3 Ry)b RMx)?
P4 R(x)a Rix)b

P4 Rix)a Ry ?

FIFO Consistency

= All writes from a process are seen in the same
order by all processes
= Order is the order of issue

Writes by different processes may be seen in
different order

P1 W(x)a

P2 R(x)a W(x)b W(x)c

pP3 R(x)a R(x)b R(x)c
P4 R(x)b R(x)a R(x)c

Synchronization-based Consistency

= Many processes access shared data inside critical
sections

= Do not care about all reads/writes to be consistent

= Only require values to be consistent at beginning
and end of critical sections

= Do not need to pass intermediate updates

= Synchronization variables (or locks) used to
trigger data synchronizations
= Makes all copies consistent

Weak Consistency

= At synchronization:
= All local writes are flushed out everywhere
= All remote writes are gathered in
= All accesses to synchronization variables are
sequentially consistent
= Ensures sequential consistency on groups of
operations
P1 W(x)a Wb S
P2 R(X)b R(x)a S R(X)b

p3 R(x)a R(x)b S R(x)b

Other Synchronization-based
Consistency Models

= Release Consistency:

= Separate synchronization operations for entry
and exit from critical sections

= Gather remote writes on entry (acquire), flush
out local writes on exit (release)

= Entry Consistency:
= Separate synchronization variable for each data
item
= Avoids false sharing, multiple non-overlapping
critical sections

Summary of Ordering-based Data-
Centric Consistency Models

= Strict: Absolute time-based

= Sequential: All processes see same order of
operations

= Causal: Causally-related operations in same order
= FIFO: Ordered per-process basis

= Synchronization-based: Flush/gather at each
synchronization

Continuous Consistency

= Consistency defined as a bound on deviations
between replicas
= Bound on a continuous scale
= Could be numerical, time-based

= Conit: Consistency unit
= Data unit over which consistency is defined
= E.g.: Individual stocks in a stockticker, OR, whole

set of stocks in an index

= What is the tradeoff between having a fine-

grained vs. coarse-grained conit?

Continuous Consistency - Deviations

= Inconsistencies between replicas are measured
in terms of deviations
= Numerical deviation: If data is numerical
= Absolute or relative
= Number of updates: Referred to as “weight”
= Staleness: How fresh is a replica?
= Must be updated with certain frequency

Eventual Consistency

= In absence of updates, all replicas converge
towards identical copies

= Applied to a replicated data store with few
updaters and many readers

= Only requirement: an update should eventually
propagate to all replicas
= Nothing assumed about the timeliness of update
propagation
= Cheap to implement
= E.g.: Web, DNS

Client-Centric View of Data

= A client may only care about the data it is
reading and writing

= E.g.: a user may only care about the posts on
their Facebook wall

= These should be in consistent order. Can use:
= Data-centric consistency models. Problem?
= Eventual consistency model. Problem?

Client-Centric Consistency Models

= Defined in terms of the values seen by a single
client at different replicas
= Assume: a client can move between replicas
= Useful for:
= Mobile applications
= Applications with multiple access points, e.g.: email
= Ordering-based consistency:
= In what order will a single client see its reads and
writes on different replicas?
= Different combinations based on read vs. write
ordering

Monotonic Reads

= If a process reads a value of x, any successive
read of x by it will return the same or a more
recent value
= E.g.: Reading the posts from different locations

L1 WI(x1)R1(x1) L1 W1(x1)R1(x1)

L2 W2(x1;x2) R1(x2) L2 W2(xi|x2) R1(x2)

Monotonic Writes

= If @ process writes to x, this write will be
completed before any successive write to x by it
= E.g.: All outgoing posts from different locations

L1 W1(x1) L1 Wi(x1)

L2 W2(x1;x2) W1(x2;x3) L2 W2(x1|x2) W1(x1|x3)

L1 W1(x1) L1 Wi(x1)

L2 W2(x1]x2) W1(x2;x3) L2 W2(x1|x2) W1(x1;x3)

Read Your Writes

= A write to x by a process will always be seen by a
successive read of x by it
= E.g.: You can see your earlier posts

L1 W1(x1) L1 Wi(x1)

L2 W2(x1; x2) R1(x2) L2 W2(x1|x2) R1(x2)

Writes Follow Reads

= If a process reads a value of x, any successive
write to x by it will take place on the same or a
more recent value
= Your post will reflect any postings you've read
earlier

L1 Wi(x1) R2(x1) L1 Wi(x1) R2(x1)

L2 W3(x1;x2) W2(x2;x3) L2 W3(x1]x2) W2(x1|x2)

Summary of Client-Centric

Consistency Models

Read first

Write first

Read next Monotonic Reads

Read Your Writes

Write next | Writes Follow Reads

Monotonic Writes

