
1

CSCI 5105

Instructor: Abhishek Chandra

2

Today

 Time Synchronization

 Physical Clocks

 Event Ordering

 Logical Clocks

3

Coordination

 Managing the interactions and activities in a
distributed system

 Clock synchronization: Can different processes
agree on timing and/or ordering of events?

 Mutual exclusion: How to synchronize access to
shared data or state?

 Leader election: How to select a master node in a
distributed algorithm?

4

Time Synchronization

 Uniprocessors

 Single clock

 All processes see the same time

 Distributed Systems

 Different clocks

 Each machine sees different times

 Why do we need time synchronization?

2

5

Clocks and Clock Drifts

 Clocks are oscillators

 Drift caused by differences in oscillator
frequencies

 Coordinated universal time (UTC)

 International standard based on atomic time

 Broadcast via radio, satellites

6

Clock Synchronization

 Each clock has a maximum drift rate r

 1-r <= dC/dt <= 1+r

 Two clocks may drift by 2r Dt in time Dt

 To limit drift to d => resynchronize every d/2r
seconds

Clock Synchronization: Goals

 Accuracy:

 Bound the deviation of any clock from the UTC

 Precision:

 Bound the deviation between any two clocks

 External vs. internal synchronization:

 Achieving accuracy or precision-only

7 8

Cristian’s Algorithm

 Used for external synchronization

 Time server: coordinated with the UTC

 Each machine asks for current time periodically

 Time server returns its current time

 Problems:

 What if returned time is less than or much higher
than machine’s time?

 What about the network delay in communication?

3

9

Correcting for Network Delay

 Network delay (δ) ≈ Avg one-way delay

 Offset (θ) = T3 – (T4 - δ)

 What if δ is large or highly variable?

Time Server

Client

T2 T3

T4 T1

10

Network Time Protocol (NTP)

 Symmetric protocol between machines

 Each machine probes the other multiple times

 Multiple (θ, δ) pairs maintained

 Select θ corresponding to minimal δ

 Which machine should update its time?

11

NTP Strata

 Machines divided into strata

 Stratum-1: Time servers connected to UTC

 Only machine with higher stratum updates time

 If server stratum=k, client stratum becomes k+1

12

Berkeley Algorithm

 Used for internal synchronization

 Goal: Same time but need not be UTC

 Time Server: Not UTC-coordinated

 Time server-driven

 Periodically asks each machine for its current
time

 Takes an average and returns the correction to
each machine

 Communication delay and time reversal problem

 Similar solutions as Cristian’s Algo

4

13

Berkeley Algorithm Reference Broadcast Synchronization

 Used in wireless broadcast networks

 For internal synchronization

 Assumption: network broadcast time relatively
uniform across receivers

 Single time server

 Sends periodic reference messages

 Each receiver p: records the receiving time
T_p,m of each message m

 Avoids the uncertainty of protocol layer delay

14

RBS: Computing the Offset

 Consider multiple sets of readings for two nodes
p and q

 Offset[p,q] = Average of (T_p,m – T_q,m)

 What if clocks drift?

 Later readings will be further off

 Use a linear regression

 Offset[p,q](t) = α.t+β

15

TrueTime

 Proposed for Google Spanner system

 Globally distributed database across multiple DCs

 Need for transactions at massive scale

 Time is specified as a time interval [T_lwb, T_upb]

 Operations: TT.now, TT.after(t), TT.before(t)

 Database operation:

 Readers need to wait for the time interval duration
after a transaction is committed

 Question: How to achieve short intervals?

16

5

TrueTime: Implementation

 Multiple time master machines per DC

 Have GPS, atomic clocks, etc.

 Bad time masters and outliers are removed

 Time-slaves:

 Run on each machine

 Synchronize with time masters

 Can get accuracy of ~6ms

17 18

Event Ordering

 Multiple communicating processes running on
different machines

 Events taking place on each process

 Computation

 Data read/write

 Sending/receiving of messages

 In what order are these events happening?

 Can we use clock times of machines?

19

Logical Clocks

 Maintain ordering of distributed events in a
consistent manner

 Main Ideas:

 Idea 1: Non-communicating processes do not
need to be synchronized

 Idea 2: Agreement on ordering is more important
than actual time

 Idea 3: Ordering can be determined by sending
and receiving of messages

20

Event Ordering

 A->B: A “happens before” B

 Rule 1: If A and B occur within the same
process, then A->B if A occurs before B

 Rule 2: If A is the sending of a message and B
is the receiving of the message, then A->B

 Transitivity: A->B and B->C => A->C

6

21

Partial Ordering

 “Happens-before” operator creates a partial
ordering of all events

 If events A and B are connected through other
events

 Always a well-defined ordering

 If no connection between A and B

 A and B are considered concurrent

22

Lamport Timestamps

 Timestamps should follow the partial event ordering

 A->B => C(A) < C(B)

 Timestamps always increase

 Lamport’s Algorithm:

 Each processor maintains a logical clock LCi

 Whenever an event occurs locally, LCi = LCi+1

 When i sends message to j, piggyback LCi

 When j receives message from i

 LCj = max(LCi,LCj)+1

23

Total Ordering

 We may want each event to have a unique
timestamp

 C(A)=(LCi, i)

 Two events with same logical clock time on two
processes:

 Process with lower ID has a smaller time stamp

24

Causality

 Lamport Clocks ensure that:

 A->B => C(A) < C(B)

 What if C(A) < C(B)?

 Is A->B?

 We would like timestamps to capture causality

 C(A) < C(B) => A->B

 We should be able to tell which event occurred
first just by looking at time stamps

7

25

Vector Timestamps

 Each process has a local “copy” of all clocks

 Each process i has a vector Vi of timestamps

 Vi[i] : number of events that have occurred at i

 Vi[j] : number of events that i knows have
occurred at process j

 Clock update

 Local event: increment Vi[i]

 Send a message: piggyback entire vector V

 Receipt of a message at j:

 For all k: Vj[k] = max(Vj[k],Vi[k])

 Vj[j] = Vj[j]+1

26

Vector Timestamps

 Comparison: Vi < Vj if:

 For all k: Vi[k] <= Vj[k], and

 For some m: Vi[m] < Vj[m]

 Can we compare timestamps to determine
causality?

 V(A) < V(B) => A->B?

 Can we compare timestamps of concurrent
events?

