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CSCI 5105 
 

Instructor: Abhishek Chandra 
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Today 

 Time Synchronization 

 Physical Clocks 

 Event Ordering 

 Logical Clocks 
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Coordination 

 Managing the interactions and activities in a 
distributed system 

 Clock synchronization: Can different processes 
agree on timing and/or ordering of events? 

 Mutual exclusion: How to synchronize access to 
shared data or state? 

 Leader election: How to select a master node in a 
distributed algorithm? 
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Time Synchronization 

 Uniprocessors 

 Single clock 

 All processes see the same time 

 Distributed Systems 

 Different clocks 

 Each machine sees different times 

 Why do we need time synchronization? 



2 

5 

Clocks and Clock Drifts 

 Clocks are oscillators 

 Drift caused by differences in oscillator 
frequencies 

 Coordinated universal time (UTC) 

 International standard based on atomic time 

 Broadcast via radio, satellites 
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Clock Synchronization 

 Each clock has a maximum drift rate r 

 1-r <= dC/dt <= 1+r 

 Two clocks may drift by 2r Dt  in time Dt 

 To limit drift to d => resynchronize every d/2r 
seconds 

Clock Synchronization: Goals 

 Accuracy: 

 Bound the deviation of any clock from the UTC 

 Precision: 

 Bound the deviation between any two clocks  

 External vs. internal synchronization: 

 Achieving accuracy or precision-only 
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Cristian’s Algorithm 

 Used for external synchronization 

 Time server: coordinated with the UTC 

 Each machine asks for current time periodically 

 Time server returns its current time 

 Problems: 

 What if returned time is less than or much higher 
than machine’s time? 

 What about the network delay in communication? 
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Correcting for Network Delay 

 Network delay (δ) ≈ Avg one-way delay 

 Offset (θ) = T3 – (T4 - δ) 

 

 What if δ is large or highly variable? 

Time Server 

Client 

T2 T3 

T4 T1 
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Network Time Protocol (NTP) 

 Symmetric protocol between machines 

 Each machine probes the other multiple times 

 Multiple (θ, δ) pairs maintained 

 Select θ corresponding to minimal δ 

 Which machine should update its time? 
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NTP Strata 

 Machines divided into strata 

 Stratum-1: Time servers connected to UTC 

 Only machine with higher stratum updates time 

 If server stratum=k, client stratum becomes k+1 
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Berkeley Algorithm 

 Used for internal synchronization 

 Goal: Same time but need not be UTC 

 Time Server: Not UTC-coordinated 

 Time server-driven 

 Periodically asks each machine for its current 
time 

 Takes an average and returns the correction to 
each machine 

 Communication delay and time reversal problem  

 Similar solutions as Cristian’s Algo 
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Berkeley Algorithm Reference Broadcast Synchronization 

 Used in wireless broadcast networks 

 For internal synchronization 

 Assumption: network broadcast time relatively 
uniform across receivers 

 Single time server  

 Sends periodic reference messages 

 Each receiver p: records the receiving time 
T_p,m of each message m 

 Avoids the uncertainty of protocol layer delay 
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RBS: Computing the Offset 

 Consider multiple sets of readings for two nodes 
p and q 

 Offset[p,q] = Average of (T_p,m – T_q,m) 

 What if clocks drift? 

 Later readings will be further off 

 Use a linear regression  

 Offset[p,q](t) = α.t+β 
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TrueTime 

 Proposed for Google Spanner system 

 Globally distributed database across multiple DCs 

 Need for transactions at massive scale 

 Time is specified as a time interval [T_lwb, T_upb] 

 Operations: TT.now, TT.after(t), TT.before(t) 

 Database operation:  

 Readers need to wait for the time interval duration 
after a transaction is committed 

 Question: How to achieve short intervals? 
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TrueTime: Implementation 

 Multiple time master machines per DC 

 Have GPS, atomic clocks, etc. 

 Bad time masters and outliers are removed 

 Time-slaves: 

 Run on each machine 

 Synchronize with time masters 

 Can get accuracy of ~6ms 
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Event Ordering 

 Multiple communicating processes running on 
different machines 

 Events taking place on each process 

 Computation 

 Data read/write 

 Sending/receiving of messages 

 In what order are these events happening? 

 Can we use clock times of machines? 
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Logical Clocks 

 Maintain ordering of distributed events in a 
consistent manner  

 Main Ideas: 

 Idea 1: Non-communicating processes do not 
need to be synchronized 

 Idea 2: Agreement on ordering is more important 
than actual time 

 Idea 3: Ordering can be determined by sending 
and receiving of messages 
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Event Ordering 

 A->B: A “happens before” B 

 Rule 1: If A and B occur within the same 
process, then A->B if A occurs before B 

 Rule 2: If A is the sending of a message and B 
is the receiving of the message, then A->B 

 Transitivity: A->B and B->C => A->C 
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Partial Ordering 

 “Happens-before” operator creates a partial 
ordering of all events 

 If events A and B are connected through other 
events 

 Always a well-defined ordering 

 If no connection between A and B 

 A and B are considered concurrent 
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Lamport Timestamps 

 Timestamps should follow the partial event ordering 

 A->B => C(A) < C(B) 

 Timestamps always increase 

 Lamport’s Algorithm: 

 Each processor maintains a logical clock  LCi 

 Whenever an event occurs locally, LCi = LCi+1 

 When i sends message to j, piggyback LCi 

 When j receives message from i 

 LCj = max(LCi,LCj)+1 
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Total Ordering 

 We may want each event to have a unique 
timestamp 

 C(A)=(LCi, i) 

 Two events with same logical clock time on two 
processes: 

 Process with lower ID has a smaller time stamp 
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Causality 

 Lamport Clocks ensure that: 

 A->B => C(A) < C(B) 

 What if C(A) < C(B)? 

 Is A->B? 

 We would like timestamps to capture causality 

 C(A) < C(B) => A->B 

 We should be able to tell which event occurred 
first just by looking at time stamps 
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Vector Timestamps 

 Each process has a local “copy” of all clocks 

 Each process i has a vector Vi of timestamps 

 Vi[i] : number of events that have occurred at i 

 Vi[j] : number of events that i knows have 
occurred at process j 

 Clock update 

 Local event: increment Vi[i] 

 Send a message: piggyback entire vector V 

 Receipt of a message at j:  

 For all k: Vj[k] = max(Vj[k],Vi[k]) 

 Vj[j] = Vj[j]+1 
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Vector Timestamps 

 Comparison: Vi < Vj if: 

 For all k: Vi[k] <= Vj[k], and 

 For some m: Vi[m] < Vj[m] 

 Can we compare timestamps to determine 
causality? 

 V(A) < V(B) => A->B? 

 Can we compare timestamps of concurrent 
events? 

 


