
1

CSCI 5105

Instructor: Abhishek Chandra

2

Today

 Distributed System Types

 Distributed Architectures

Types of Distributed Systems

 Distributed Computing Systems

 Distributed Information Systems

 Pervasive Systems

3

Distributed Computing Systems

 High-Performance Computing

 Tightly-coupled, high-speed/capacity nodes

 Cluster Computing

 Collection of homogeneous computers over LAN

 Grid Computing

 Federated multi-admin heterogeneous clusters

 Cloud Computing

 Pay-per-use elastic virtualized resources

 IaaS, PaaS, SaaS

4

2

Distributed Information Systems

 Distributed File Systems

 Files and users are distributed

 Distributed Databases

 Distributed data and transactions

 World Wide Web

 Information and users are widely distributed

5

Pervasive Systems

 Ubiquitous Computing Systems

 Embedded devices, context-aware, interaction
with users

 Mobile Systems

 Mobile devices, can move with users

 Sensor networks

 Collection of sensors collecting and processing
data together

6

7

Distributed Architecture

 A distributed application runs across multiple nodes

 Software architecture: Logical organization

 How to organize the various pieces of the application?

 How do different pieces interact with each other?

 System architecture: Physical organization

 Where do different pieces of the application execute?

 Where is the control, user interface, computation,
data?

Software Architecture Styles

 How to implement a distributed application

 How are software components organized?

 How do they communicate with each other?

 Component: Module with a well-defined interface

 Implements some part of the application functionality

 Connector: Communication mechanism

 Will enable components to talk and coordinate

8

3

Layered Architecture

 Components are placed in multiple layers

 Each layer interacts with those above and below

 Common layering:

 Application-interface

 Processing

 Data

9

Object-based Architecture

 Each component is an object

 Encapsulates data and state

 Exposes an interface and methods

 Distributed objects

 Can be placed on different nodes

 Communication via (remote) method invocations

10

Service-Oriented Architecture (SOA)

 Each component is a service (possibly in a
different domain)

 Use service-specific interfaces

 Can have a complex implementation

11

Resource-Based Architecture

 Collection of resources managed by components

 Can be added, deleted, modified by other
applications

 REST (Representational State Transfer)

 Single naming system

 Common, small interface

 Self-contained messages

 Stateless execution

12

4

Publish-Subscribe Architecture

 Collection of autonomous processes

 Referentially decoupled: do not directly address
or communicate with each other

 Event-based coordination:

 Events generated by some processes

 Other processes notified of events

 Shared data space:

 Publishers: Post events as tuples

 Subscribers: Get tuples matching search pattern

13

Middleware

 A distributed layer between applications and
low-level OS

 Provides core functionality and services

 Applications can use these for higher-level
functionality

 May rely on per-node OS/software support

14

15

System Architecture

 How is a software architecture instantiated?

 Where are different software components placed?

 Centralized: Most functionality is in a single node

 Decentralized: Functionality is spread across
symmetrical nodes

 Hybrid: Combination of the two

16

Centralized Architecture

 Client-server: Core functionality is in the server

 Application is vertically distributed

 Distribution along functionality

 Logically different component at different place

 E.g.: UI at client, computation & data at server

5

17

Multi-tiered Architecture

 Could have variations on component distribution

 Different amount of functionality between client-server

 Only UI at client

 UI+partial processing at client

 UI+processing at client, data at server

 Multi-tiered server architecture:

 Server functionality can be split across multiple nodes

 E.g.: Front-end, Application server, Database

18

Decentralized Architecture

 Horizontal distribution of application

 Each component is identical in functionality

 Differ in the portion of data/state they operate on

 E.g.: File-sharing, parallel processing

19

Server Clusters

 Replication of functionality across nodes

 Multiple front-ends, app servers, databases

 Client requests are distributed among the
servers

 Load balancing

 Content-aware forwarding

20

Peer-to-Peer Systems

 Each component is symmetric in functionality

 Servent: Combination of server-client

 How does a node find the other?

 No “well-known” centralized server

 Overlay network: A logical network consisting of
participant components

 Nodes are processes/machines, links are
communication channels (e.g., TCP connections)

6

21

Types of P2P Systems

 Unstructured: Built in a random manner

 Each node can end up with any sets of
neighbors, any part of application data

 E.g.: Gnutella, Kazaa

 Structured: Built in a deterministic manner

 Each node has well-defined set of neighbors,
handles specific part of application data

 E.g.: CAN, Chord, Pastry

22

Unstructured P2P Architectures

 Each node has a list of neighbors to which it is
connected

 Communication to other nodes in the network
happens through neighbors

 Neighbors are discovered in a random manner

 Exchange information with other nodes to maintain
neighbor lists

 Application data is randomly spread across the
nodes

 Searching for a data item:

 Flooding or Random Walk

23

Structured P2P Architectures

 Nodes and data are organized deterministically

 Distributed Hash Tables (DHT)

 Each node has a well-defined ID

 Each data item also has a key

 A data item resides in the node with nearest key

 Each node has information about neighbors in
the ID space

 Searching for a data item:

 Routing through the DHT overlay network

Hierarchical Architecture

 Tree of nodes

 More scalable than a centralized architecture

 Each node handles only part of the network

 E.g.: DNS

24

7

25

SuperPeers

 Special peers that maintain an index

 Of other peers

 Of data items and their location

 Need for superpeers:

 Efficient search: Avoid flooding

 Location-awareness: Find “nearest” neighbors

 Easy Join: Node can easily find a starting peer

26

Hybrid Architecture

 Combination of centralized and distributed
architectures

 Some parts of the system organized as client-
servers

 Other parts organized in decentralized manner

27

Edge-Server Systems

 Servers on edge of the network

 Provide localized content and compute to users

 Decentralized set of content servers, may have
P2P relationship

 Client-Server relation to the users

 E.g.: Content Distribution Networks (CDNs) such
as Akamai

28

Collaborative Distributed Systems

 Work by user collaboration

 P2P in functionality

 Starting up is done in a client-server manner

 E.g.: Bittorrent, Napster

