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Today 

 Distributed System Types 

 Distributed Architectures 

Types of Distributed Systems 

 Distributed Computing Systems 

 Distributed Information Systems 

 Pervasive Systems 
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Distributed Computing Systems 

 High-Performance Computing 

 Tightly-coupled, high-speed/capacity nodes 

 Cluster Computing 

 Collection of homogeneous computers over LAN 

 Grid Computing 

 Federated multi-admin heterogeneous clusters 

 Cloud Computing 

 Pay-per-use elastic virtualized resources 

 IaaS, PaaS, SaaS 
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Distributed Information Systems 

 Distributed File Systems 

 Files and users are distributed 

 Distributed Databases 

 Distributed data and transactions 

 World Wide Web 

 Information and users are widely distributed 
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Pervasive Systems 

 Ubiquitous Computing Systems 

 Embedded devices, context-aware, interaction 
with users 

 Mobile Systems 

 Mobile devices, can move with users 

 Sensor networks 

 Collection of sensors collecting and processing 
data together 
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Distributed Architecture 

 A distributed application runs across multiple nodes 

 Software architecture: Logical organization 

 How to organize the various pieces of the application? 

 How do different pieces interact with each other? 

 System architecture: Physical organization 

 Where do different pieces of the application execute? 

 Where is the control, user interface, computation, 
data? 

Software Architecture Styles 

 How to implement a distributed application 

 How are software components organized? 

 How do they communicate with each other? 

 Component: Module with a well-defined interface 

 Implements some part of the application functionality 

 Connector: Communication mechanism 

 Will enable components to talk and coordinate 
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Layered Architecture 

 Components are placed in multiple layers 

 Each layer interacts with those above and below 

 Common layering:  

 Application-interface 

 Processing 

 Data 
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Object-based Architecture 

 Each component is an object 

 Encapsulates data and state 

 Exposes an interface and methods 

 Distributed objects 

 Can be placed on different nodes 

 Communication via (remote) method invocations 
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Service-Oriented Architecture (SOA) 

 Each component is a service (possibly in a 
different domain) 

 Use service-specific interfaces 

 Can have a complex implementation 
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Resource-Based Architecture 

 Collection of resources managed by components 

 Can be added, deleted, modified by other 
applications 

 REST (Representational State Transfer) 

 Single naming system 

 Common, small interface 

 Self-contained messages 

 Stateless execution 
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Publish-Subscribe Architecture 

 Collection of autonomous processes  

 Referentially decoupled: do not directly address 
or communicate with each other 

 Event-based coordination: 

 Events generated by some processes 

 Other processes notified of events 

 Shared data space: 

 Publishers: Post events as tuples 

 Subscribers: Get tuples matching search pattern 
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Middleware 

 A distributed layer between applications and 
low-level OS 

 Provides core functionality and services 

 Applications can use these for higher-level 
functionality 

 May rely on per-node OS/software support 
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System Architecture 

 How is a software architecture instantiated? 

 Where are different software components placed? 

 Centralized: Most functionality is in a single node 

 Decentralized: Functionality is spread across 
symmetrical nodes 

 Hybrid: Combination of the two 
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Centralized Architecture 

 Client-server: Core functionality is in the server 

 Application is vertically distributed 

 Distribution along functionality 

 Logically different component at different place 

 E.g.: UI at client, computation & data at server 
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Multi-tiered Architecture 

 Could have variations on component distribution 

 Different amount of functionality between client-server 

 Only UI at client 

 UI+partial processing at client 

 UI+processing at client, data at server 

 Multi-tiered server architecture: 

 Server functionality can be split across multiple nodes 

 E.g.: Front-end, Application server, Database 
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Decentralized Architecture 

 Horizontal distribution of application 

 Each component is identical in functionality 

 Differ in the portion of data/state they operate on 

 E.g.: File-sharing, parallel processing 
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Server Clusters 

 Replication of functionality across nodes 

 Multiple front-ends, app servers, databases 

 Client requests are distributed among the 
servers 

 Load balancing 

 Content-aware forwarding 
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Peer-to-Peer Systems 

 Each component is symmetric in functionality 

 Servent: Combination of server-client 

 How does a node find the other? 

 No “well-known” centralized server 

 Overlay network: A logical network consisting of 
participant components  

 Nodes are processes/machines, links are 
communication channels (e.g., TCP connections) 
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Types of P2P Systems 

 Unstructured: Built in a random manner 

 Each node can end up with any sets of 
neighbors, any part of application data 

 E.g.: Gnutella, Kazaa 

 Structured: Built in a deterministic manner 

 Each node has well-defined set of neighbors, 
handles specific part of application data 

 E.g.: CAN, Chord, Pastry 
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Unstructured P2P Architectures 

 Each node has a list of neighbors to which it is 
connected 

 Communication to other nodes in the network 
happens through neighbors 

 Neighbors are discovered in a random manner 

 Exchange information with other nodes to maintain 
neighbor lists 

 Application data is randomly spread across the 
nodes 

 Searching for a data item:  

 Flooding or Random Walk 
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Structured P2P Architectures 

 Nodes and data are organized deterministically 

 Distributed Hash Tables (DHT) 

 Each node has a well-defined ID 

 Each data item also has a key 

 A data item resides in the node with nearest key 

 Each node has information about neighbors in 
the ID space 

 Searching for a data item: 

 Routing through the DHT overlay network 

Hierarchical Architecture 

 Tree of nodes 

 More scalable than a centralized architecture 

 Each node handles only part of the network 

 E.g.: DNS 
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SuperPeers 

 Special peers that maintain an index 

 Of other peers 

 Of data items and their location 

 Need for superpeers: 

 Efficient search: Avoid flooding 

 Location-awareness: Find “nearest” neighbors 

 Easy Join: Node can easily find a starting peer 
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Hybrid Architecture 

 Combination of centralized and distributed 
architectures 

 Some parts of the system organized as client-
servers 

 Other parts organized in decentralized manner 
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Edge-Server Systems 

 Servers on edge of the network 

 Provide localized content and compute to users 

 Decentralized set of content servers, may have 
P2P relationship  

 Client-Server relation to the users 

 E.g.: Content Distribution Networks (CDNs) such 
as Akamai 
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Collaborative Distributed Systems 

 Work by user collaboration 

 P2P in functionality 

 Starting up is done in a client-server manner 

 E.g.: Bittorrent, Napster 

 


