Constraint sat. prob. (Ch. 6)

Announcements

Writing 3 assigned, due Sunday -Find papers for project -scholar.google.com is your friend!

I suggest not looking for your problem (e.g. if you want to do "poker" as your project, do not google search "poker research") ... instead look at the technique used (if you plan to solve "poker" using minimax, search for general "minimax" papers)

A <u>constraint satisfaction problem</u> is when there are a number of variables in a domain with some restrictions

A <u>consistent</u> assignment of variables has no violated constraints

A <u>complete</u> assignment of variables has no unassigned variables (A solution is complete and consistent)

Map coloring is a famous CSP problem Variables: each state/country Domain: {yellow, blue, green, purple} (here) Constraints: No adjacent variables same color

Consistent and complete

Another common use of CSP is job scheduling

Suppose we have 3 jobs: J_1 , J_2 , J_3 If J_1 takes 20 time units to complete, J_2 takes 30 and J_3 takes 15 <u>but</u> J_1 must be done before J_3

How to write this as a boolean expression? (jobs cannot be scheduled at the same time)

Suppose we have 3 jobs: J_1 , J_2 , J_3 If J_1 takes 20 time units to complete, J_2 takes 30 and J_3 takes 15 <u>but</u> J_1 must be done before J_3

We can represent this as (<u>and</u> them together): $J_1 \& J_2$: $(J_1 + 20 \le J_2 \text{ or } J_2 + 30 \le J_1)$ $J_1 \& J_3$: $(J_1 + 20 \le J_3)$ $J_2 \& J_3$: $(J_2 + 30 \le J_3 \text{ or } J_3 + 15 \le J_2)$

A <u>unary</u> constraint is for a single variable (i.e. J_1 cannot start before time 5)

<u>Binary</u> constraints are between two variables (i.e. J_1 starts before J_2)

Constraints can involve more variables, such as in Sudoku all numbers on a row needs to be different: AllDiff(a11,a12,a13,a14, ...)

All constraints can be reduced to just binary and unary constraints, but may require making variables to store temporary information

Our goal is to use the constraints to narrow the domains of possible values of variables

<u>k-consistency</u> is a measurement of how well the domains satisfy different degrees of the constraints (larger 'k' = satisfy more complex)

K-consistency is: For any consistent sets size (k-1), there exists a valid value for any other variable (not in set)

1-consistency: All values in the domain satisfy the variable's unary constraints
2-consistency: All binary values are in domain
3-consistency: Given consistent 2 variables,
there is a value for a third variable(i.e. if {A,B}
is consistent, then exists C s.t. {A,C}&{B,C})

For example, 1-consistent means you can pick 0 consistent variables (if you pick nothing it is always consistent) then any assignment to a new variable is also consistent

This boils down to saying you can pick any valid pick of a single variable in isolation

In other words, you satisfy the unary constraints

2-consistent means you pick a valid value from the domain for one variable and see if there is <u>any</u> valid assignment for a second var

3-consistent means you pick a valid pair of values for 2 variables and see if there is <u>any</u> valid assignment for a third variable

If you are unable to find a valid assignment for the last variable, it is not consistent

Rules: 1. Tasmania cannot be red 2.Neighboring providences cannot share colors

2 Colors: red green

 $WA = \{red, green\}$ $NT = \{red, green\}$ $Q = \{red, green\}$ $SA = \{red, green\}$ $NSW = \{red, green\}$ $V = \{red, green\}$ $T = \{red, green\}$

Not 1-consistent as we need T to not be red (i.e. rule #2 eliminates T=red)

WA = NT = Q = SA = NSW = V = {red, green} T = {green}

1-consistent now

Also 2-consistent, for example: Pick WA as "set k-1", then try to pick NT... If WA=green, then we can make NT=red if WA=red, NT=green (true for all pairs)

WA = NT = Q = SA = NSW = V = {red, green} T = {green}

Not 3-consistent!

Pick (WA, SA) and add NT... If NT=green, will not work with either: (WA=red,SA=green) or (WA=green,SA=red)... NT=red also will not work, so NT's domain is empty and not 3-cons.

Try to do k-consistency for this job problem (Domains for all: {1, 2, 3, 4, 5, 6, 7, 8...}) Jobs cannot overlap J3 takes 3 time units J2 takes 2 time units J1 takes 1 time unit J1 must happen before J3 J2 cannot happen at time 1 All jobs must finish by time 7 (i.e. you can start J2 at time 5 but not at time 6)

Applying constraints

We can repeatedly apply our constraint rules to shrink the domain of variables (we just shrunk NT's domain to nothing)

This reduces the size of the domain, making it easier to check:

- If the domain size is zero, there are no solutions for this problem
- If the domain size is one, this variable must take on that value (the only one in domain)

Applying constraints

AC-3 checks all 2-consistency constraints:

1. Add all binary constraints to queue 2. Pick a binary constraint (X_i, Y_i) from queue 3. If x in domain(X_i) and no consistent y in domain(Y_i), then remove x from domain(X_i) 4. If you removed in step 3, update all other binary constraints involving X_i (i.e. (X_i, X_k)) 5. Goto step 2 until queue empty

Applying constraints

Some problems can be solved by applying constraint restrictions (such as sudoku) (i.e. the size of domain is one after reduction)

Harder problems this is insufficient and we will need to search to find a solution

Which is what we will do... now

Let us go back to Australia coloring:

How can you color using search techniques?

We can use an incremental approach:

State = currently colored provinces (and their color choices)

Action = add a new color to any province that does not conflict with the constraints

Goal: To find a state where all provinces are colored

Is there a problem?

Is there a problem?

Let d = domain size (number of colorings), n = number of variables (provinces)

The number of leaves are n! * dⁿ

However, there are only dⁿ possible states in the CSP so there must be a lot of duplicate leaves (not including mid-tree parts)

CSP assumes one thing general search does not: the order of actions does not matter

In CSP, we can assign a value to a variable at any time and in any order without changing the problem (all we care about is the end state)

So all we need to do is limit our search to one variable per depth, and we will have a match with CSP of dⁿ leaves (all combinations)

Let's apply CSP modified DFS on Australia: (assign values&variables in alphabetical order)

1st: blue 2nd: green 3rd: red

STOP PICKING BLUE EVERY TIME!!!!

THIRD PARTY FACE PALM

For when there is so much fail you need that extra bit of outside help ...