
Constraint sat. prob. (Ch. 6)



Announcements

Writing 3 assigned, due Sunday
-Find papers for project
-scholar.google.com is your friend!

I suggest not looking for your problem 
(e.g. if you want to do “poker” as your project,
do not google search “poker research”)
... instead look at the technique used
(if you plan to solve “poker” using minimax, 
search for general “minimax” papers)



CSP

A constraint satisfaction problem is when there
are a number of variables in a domain with
some restrictions

A consistent assignment of variables has no
violated constraints

A complete assignment of variables has no
unassigned variables

(A solution is complete and consistent)



CSP

Map coloring is a famous CSP problem
Variables: each state/country
Domain: {yellow, blue, green, purple} (here)
Constraints: No adjacent variables same color

Consistent
but partial



CSP

partial and
not consistent

Consistent and
complete



CSP

Another common use of CSP is job scheduling



CSP

Suppose we have 3 jobs: J
1
, J

2
, J

3

If J
1
 takes 20 time units to complete, J

2
 takes 

30 and J
3
 takes 15 but J

1
 must be done before J

3

How to write this as a boolean expression?
(jobs cannot be scheduled at the same time)



CSP

Suppose we have 3 jobs: J
1
, J

2
, J

3

If J
1
 takes 20 time units to complete, J

2
 takes 

30 and J
3
 takes 15 but J

1
 must be done before J

3

We can represent this as (and them together):
J

1
 & J

2
: (J

1
 + 20 < J

2
 or J

2
 + 30 < J

1
) 

J
1
 & J

3
: (J

1
+20 < J

3
) 

J
2
 & J

3
: (J

2
 + 30 < J

3
 or J

3
 + 15 < J

2
) 



Types of constraints

A unary constraint is for a single variable
(i.e. J

1
 cannot start before time 5)

Binary constraints are between two variables
(i.e. J

1
 starts before J

2
)

Constraints can involve more variables, such 
as in Sudoku all numbers on a row needs to be 
different: AllDiff(a11,a12,a13,a14, ...)



Types of constraints

All constraints can be reduced to just binary
and unary constraints, but may require making
variables to store temporary information

Our goal is to use the constraints to narrow
the domains of possible values of variables

k-consistency is a measurement of how well
the domains satisfy different degrees of the
constraints (larger ‘k’ = satisfy more complex)



Types of constraints

K-consistency is:
For any consistent sets size (k-1), there exists
a valid value for any other variable (not in set)

1-consistency: All values in the domain
satisfy the variable's unary constraints

2-consistency: All binary values are in domain
3-consistency: Given consistent 2 variables,
there is a value for a third variable(i.e. if {A,B}
is consistent, then exists C s.t. {A,C}&{B,C})



Types of constraints

For example, 1-consistent means you can
pick 0 consistent variables (if you pick nothing
it is always consistent) then any assignment
to a new variable is also consistent

This boils down to saying you can pick any
valid pick of a single variable in isolation

In other words, you satisfy the unary 
constraints



Types of constraints

2-consistent means you pick a valid value
from the domain for one variable and see if
there is any valid assignment for a second var

3-consistent means you pick a valid pair of
values for 2 variables and see if there is any
valid assignment for a third variable

If you are unable to find a valid assignment for
the last variable, it is not consistent



Types of constraints

Rules: 1. Tasmania cannot be red
2.Neighboring providences cannot share colors

2 Colors:
red
green



Types of constraints

WA = {red, green}
NT = {red, green}
Q = {red, green}
SA = {red, green}
NSW = {red, green}
V = {red, green}
T = {red, green}

Not 1-consistent as we need T to not be red
(i.e. rule #2 eliminates T=red)

WA
NT
SA

Q
NSW

V T



Types of constraints

WA = NT = Q = SA = NSW = V 
= {red, green}
T = {green}

1-consistent now

Also 2-consistent, for example:
Pick WA as “set k-1”, then try to pick NT... 
If WA=green, then we can make NT=red
if WA=red, NT=green (true for all pairs)

WA
NT
SA

Q
NSW

V T



Types of constraints

WA = NT = Q = SA = NSW = V 
= {red, green}
T = {green}

Not 3-consistent!

Pick (WA, SA) and add NT... If NT=green, 
will not work with either: (WA=red,SA=green) 
or (WA=green,SA=red)... NT=red also will not 
work, so NT's domain is empty and not 3-cons.

WA
NT
SA

Q
NSW

V T



Types of constraints

Try to do k-consistency for this job problem
(Domains for all: {1, 2, 3, 4, 5, 6, 7, 8...})

Jobs cannot overlap
J3 takes 3 time units
J2 takes 2 time units
J1 takes 1 time unit
J1 must happen before J3
J2 cannot happen at time 1
All jobs must finish by time 7 
(i.e. you can start J2 at time 5 but not at time 6)



Applying constraints

We can repeatedly apply our constraint rules
to shrink the domain of variables (we just 
shrunk NT's domain to nothing)

This reduces the size of the domain, making
it easier to check: 

- If the domain size is zero, there are no
solutions for this problem

- If the domain size is one, this variable must
take on that value (the only one in domain)



Applying constraints

AC-3 checks all 2-consistency constraints:

1. Add all binary constraints to queue
2. Pick a binary constraint (X

i
, Y

j
) from queue

3. If x in domain(X
i
) and no consistent y in 

domain(Y
j
), then remove x from domain(X

i
)

4. If you removed in step 3, update all other
binary constraints involving X

i
 (i.e. (X

i
, X

k
))

5. Goto step 2 until queue empty



Applying constraints

Some problems can be solved by applying 
constraint restrictions (such as sudoku)
(i.e. the size of domain is one after reduction)

Harder problems this is insufficient and we
will need to search to find a solution

Which is what we will do... now



CSP vs. search

Let us go back to Australia coloring:

How can you color using search techniques?



We can use an incremental approach:

State = currently colored provinces (and their
color choices)

Action = add a new color to any province  that 
does not conflict with the constraints

Goal: To find a state where all provinces are
colored

CSP vs. search



Is there a problem?

CSP vs. search



Is there a problem?

Let d = domain size (number of colorings),
n = number of variables (provinces)

The number of leaves are n! * dn

However, there are only dn possible states
in the CSP so there must be a lot of duplicate
leaves (not including mid-tree parts)

CSP vs. search



CSP assumes one thing general search does 
not: the order of actions does not matter

In CSP, we can assign a value to a variable at
any time and in any order without changing
the problem (all we care about is the end state)

So all we need to do is limit our search to one
variable per depth, and we will have a match
with CSP of dn leaves (all combinations)

CSP vs. search



Let's apply CSP modified DFS on Australia:
(assign values&variables in alphabetical order)

1st: blue
2nd: green
3rd: red

CSP vs. search

1

2 3

4

5
6

7



CSP vs. search

NSW:

NT:

Q:

SA:

T:
...

X X X X X

X X X

B G R

Nothing colored

NSW red
...



CSP vs. search

STOP PICKING BLUE EVERY TIME!!!!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

