
Planning (Ch. 10)

Announcements

Midterm 2 graded (on gradescope)

Forward search

Last time...
Initial: At(Truck, UPSD) ^ Package(UPSD, P1)

^ Package(UPSD, P2) ^ Mobile(Truck)
Goal: Package(H1, P1) ^ Package(H2, P2)

Heuristics for planning

Backwards search has a smaller branching
factor in general, but it is hard to use heuristics

This is due to it looking at sets of states, and
not a single state for the next action

For this reason, it is often better to apply
a good heuristic to the dumb forward search

Heuristics for planning

Reformulate our grilling problem as actions:

If our goal is just “Sandwitch(Bread)”,
backtracking search would try to solve:

... but since “x” is still a variable, this
represents a set of states rather than one

Heuristics for planning

In “search” we had no generalize-able
heuristics as each problem could be different

Heuristics in planning are found the same way,
we (1) relax the problem (2) solve it optimally

Two generic ways to always do this are:
1. Add more actions
2. Reduce number of states

Heuristics: add actions

Multiple ways to add actions (to goal faster):

1. Ignore preconditions completely - also
ignore any effects not related to goals

This becomes set-covering problem, which
is NP-hard but has P approximations

2. Ignore any deletions in effects (i.e. anything
with), also NP-hard but P approximation

Ignore preconditions

By simply removing preconditions, we allow
every action to happen at every state

Ignore preconditions

More importantly for the solution is how the
Delivery action changes

The USPD can now just directly
deliver to houses, so goal is:
Deliver(USPD, P1, H1) and then
Deliver(USPD, P2, H2)

Ignore negative effects

To use this heuristic, the goal & preconditions
cannot have negatives (i.e.)

This can always be rewritten to something else

Ignore negative effects

For the UPS delivery example, it does not
help us find a solution faster (min is 6 still)

However, there are many more solutions
as every action “copies” instead of “moves”

For example, a solution could be:
Move, Move, Load, Load, Deliver, Deliver

This is possible as truck exists at all 3 spots!

After 2 moves... then load...

After 2 moves... then load...

Heuristics: group states

Group similar states together into “super
states” and solve the problem within
“super states” separately (divide & conquer)

An admissible but bad heuristic would be
the maximum of all “super states” individual
solutions (but this is often poor)

A possibly non-admissible would be the sum
of all “super states” (need independence)

Heuristics: group states

These “super states” can created in many ways

1. Delete relations/fluents (e.g. no more “At”)
2. Merge objects/literals (e.g. merge UPSD

and Truck)

You then need to solve two problems:
1. Between the abstract “super states”
2. Within each “super state”

Heuristics: group states

Consider if there were 3 houses, but only
two needed packages

We could remove all “At”s for this third house,
as we can easily abstract it away

In this case the “super state” solution is
the actual solution as there is no need to
add back in a third house

Heuristics: group states

For example, if we were instead delivering
3 packages, 1 to H1 and 2 to H2...

We combine the two packages for H2 into a
single “super package” with only one load and
deliver (overall “super state” solution)

We then can simply see that each load/deliver
corresponds to two individual loads/delivers
(within super state solution)

Graph Plan

A heuristic we will go over in detail is graph
planning, which tries to do all possible actions
at each step

The graph plan heuristic is nice because it is
always admissible and computable in P time

The basic idea of graph plan is to track all
the statements that could be true at any time

Graph Plan

Graph plan is an underestimate because once
a relation/literal is added, it is never removed

Unlike the “remove negative effects” heuristic,
we allow both negative and positive effects

But we can also use any preconditions that
have been found anytime before (not quite as
open as completely removing them)

Graph Plan

These simplifications/relaxations probably
make the problem too easy

So we also track pairs of both actions and
literals that are in conflict (called mutexes)

First, let's go over how to convert actions
and relations into graph plan, then later
we will add in the mutexes

Graph Plan

Graph plan will alternate between possible
facts (“state level”) and actions (“action level”)

initial
state

state level 0=

Graph Plan

You start with the relations of the initial state
on the left (now explicitly stating negatives)

Then you add “no actions” which simply
keep all the relationships the same but move
them to the right

Then you add actions, which you do by linking
preconditions on the left to resulting effects
on the right (adding any new ones)

Graph Plan

Consider this problem:

Graph Plan

Consider this problem:

H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Graph Plan

Each set of relations/literals are what we call
levels of the graph plan, S = states, A = actions

State level 0 is S
0
 = {H, S}

A
0
 = {C, E, all “no ops”}

S
1
 = {H, ┐H, S, ┐S}

A
1
 = {C, E, Sl, all “no ops”}

S
2
 = {H, ┐H, S, ┐S}

Graph Plan

You do it! (show 3 state and 2 action levels)

Graph Plan
 D D

┐D ┐D ┐D

 S S

┐S ┐S ┐S

 M M

┐M ┐M ┐M

Sc

J

Sc

P

J

Graph Plan

The graph plan allows multiple actions to be
done in a single turn, which is why S

1
 has both

┐Sleepy(me) and ┐Hungry(me)

You keep building the graph until either:
(1) You find your goal (more on this later)
(2) The graph converges (i.e. states, actions

and mutexes stop changing)

Mutexes

A mutex are two things that cannot be together
(i.e. cannot happen or be true simultaneously)

You can put mutexes:
1. Between two relationships/literals
2. Between actions

There are different rules for doing mutexes
between actions vs. relations

Mutexes: actions

For all of these cases I will assume actions
two actions: A1 and A2

These actions have preconditions and effects:
Pre(A1) and Effect(A1), respectively

For example, I will abbreviate below as:

Mutexes: actions

1.
2.
3.
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutex Action rules:

Mutexes: actions

1.
2.
3.
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutex Action rules:

Mutexes: actions

1.
2.
3.
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutex Action rules:

Mutexes: actions

1.
2.
3.
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutex Action rules:

Mutexes: actions

1.
2.
3.
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutex Action rules:

Mutexes: actions

1.
2.
3.
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutex Action rules:

Mutexes: actions

1.
2.
3.
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutex Action rules:

Mutexes: states

There are 2 rules for states, but unlike
action-mutexes they can change across levels

1. Opposite relations are mutexes (x and ┐x)
2. If there are mutexes between all possible

actions that “lead” to a pair of states...

Two ways that “leading” can be in mutex:
1. Actions are in mutex
2. Preconditions of action pair are in mutex

Mutexes: states

Another way to compute state mutexes:

(1) Add mutexes between all pairs in state
(2) If any pair of actions can lead to this pair

of relationships, un-mutex them

Recap:
If any valid pair of actions = no mutex
All ways of reaching invalid = mutex

Mutexes: states

1. Opposite relations are mutexes (x and ┐x)
2. If there are mutexes between all possible

actions that lead to a pair of states
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutexes: states

1. Opposite relations are mutexes (x and ┐x)
2. If there are mutexes between all possible

actions that lead to a pair of states
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

Mutexes: states

1. Opposite relations are mutexes (x and ┐x)
2. If there are mutexes between all possible

actions that lead to a pair of states
H H H

┐H ┐H

S S S

┐S ┐S
C

E

C

E

Sl

None...
but if we
remove
coffee...

Mutexes: states

1. Opposite relations are mutexes (x and ┐x)
2. If there are mutexes between all possible

actions that lead to a pair of states
H H H

┐H ┐H

S S S

┐S

E E

Sl

Sl has mutex with both
E and NoOp(┐H)

This mutex
will be gone
on the next
level (as
you can
eat again)

Mutexes: states

1. Opposite relations are mutexes (x and ┐x)
2. If there are mutexes between all possible

actions that lead to a pair of states
H H H

┐H ┐H

S S S

┐S

E E

Sl

Mutexes: actions

You do it!

Mutexes: actions
 D D

┐D ┐D ┐D

 S S

┐S ┐S ┐S

 M M

┐M ┐M ┐M

Sc

J

Sc

P

J

Mutexes: actions
 D D

┐D ┐D ┐D

 S S

┐S ┐S ┐S

 M M

┐M ┐M ┐M

Sc

J

Sc

P

J

Non-trivial
mutexes:
(SC, P),
(J, P),
(SC, J),
(P,┐D&M),
(SC,┐D&┐S),
(J,┐M&S)

GraphPlan

GraphPlan can be computed in O(n(a+l)2),
where n = levels before convergence
a = number of actions
l = number of relations/literals/states
(square is due to needing to check all pairs)

The original planning problem is PSPACE,
which is known to be harder than NP

GraphPlan: states

Let's consider this problem:

GraphPlan: states

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Possible state pairs:
F, C C, Q
F,┐C C, ┐Q
F, G C, P
F, ┐G ┐C, G
F, Q ┐C, ┐G
F, ┐Q ┐C, Q
F, P ┐C, ┐Q
C, ┐C ┐C, P
C, G ... (more)
C, ┐G

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Make
one
more
level
here!

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Blue mutexes
dissappear

Pink = new mutex

GraphPlan as heuristic

GraphPlan is optimistic, so if any pair of goal
states are in mutex, the goal is impossible

3 basic ways to use GraphPlan as heuristic:
(1) Maximum level of all goals
(2) Sum of level of all goals (not admissible)
(3) Level where no pair of goals is in mutex

(1) and (2) do not require any mutexes, but are
less accurate (quick 'n' dirty)

GraphPlan as heuristic

For heuristics (1) and (2), we relax as such:
1. Multiple actions per step, so can only take

fewer steps to reach same result
2. Never remove any states, so the number

of possible states only increases

This is a valid simplification of the problem,
but it is often too simplistic directly

GraphPlan as heuristic

Heuristic (1) directly uses this relaxation and
finds the first time when all 3 goals appear
at a state level

(2) tries to sum the levels of each individual
first appearance, which is not admissible
(but works well if they are independent parts)

Our problem: goal={Food, ┐Garbage, Present}
First appearance: F=1, ┐G=1, P=1

GraphPlan: states

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Level 0: Level 1:

Heuristic (1):
Max(1,1,1) = 1

Heuristic (2):
1+1+1=3

GraphPlan as heuristic

Often the problem is too trivial with just
those two simplifications

So we add in mutexes to keep track of invalid
pairs of states/actions

This is still a simplification, as only impossible
state/action pairs in the original problem are
in mutex in the relaxation

GraphPlan as heuristic

Heuristic (3) looks to find the first time none
of the goal pairs are in mutex

For our problem, the goal states are:
(Food, ┐Garbage, Present)

So all pairs that need to have no mutex:
(F, ┐G), (F, P), (┐G, P)

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

None of the
pairs are in
mutex at
level 1

This is our
heuristic
estimate

Finding a solution

GraphPlan can also be used to find a solution:
(1) Converting to a Constraint Sat. Problem
(2) Backwards search

Both of these ways can be run once GraphPlan
has all goal pairs not in mutex (or converges)

Additionally, you might need to extend
it out a few more levels further to find a
solution (as GraphPlan underestimates)

GraphPlan as CSP

Variables = states, Domains = actions out of
Constraints = mutexes & preconditions

from Do & Kambhampati

Finding a solution

For backward search, attempt to find arrows
back to the initial state(without conflict/mutex)

Start by finding actions that satisfy all goal
conditions, then recursively try to satisfy
all of the selected actions’ preconditions

If this fails to find a solution, mark this level
and all the goals not satisfied as: (level, goals)
(level, goals) stops changing, no solution

Graph Plan

Remember this...

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
Find first
no mutex...

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
... then back
search

Error! States of
1&4 in mutex

1.

2.

3.

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
try different
back path...

1.
2.

Error, actions
3&4 in mutex

3.

4.

Graph Plan
 D D D

┐D ┐D ┐D ┐D

 S S S

┐S ┐S ┐S ┐S

 M M M

┐M ┐M ┐M ┐M

Sc

J

Sc

P

J

Sc

P

J

Ask:
┐D^S^┐M
found
solution!

Finding a solution

Formally, the algorithm is:

graph = initial
noGoods = empty table (hash)
for level = 0 to infinity

if all goal pairs not in mutex
solution = recursive search with noGoods
if success, return paths

if graph & noGoods converged, return fail
graaph = expand graph

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

Mutexes

C

G

Q

M

W

D

T

F

C
┐C

G
┐G

Q
┐Q
P

You try it!

	Slide 1
	Slide 2
	Slide 3
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 53
	Slide 54
	Slide 56
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 75
	Slide 76
	Slide 77
	Slide 81
	Slide 83
	Slide 84
	Slide 86
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106

