
Propositional logic (Ch. 7)

Logic: definitions

We say that two sentences are equivalent
if they both contain the same models:

α ≡ β iff (if and only if) M(α) = M(β)
... or alternatively...

α ≡ β iff α╞ β AND β╞ α

This is the sentence version of
(the boolean “iff” operator)

Logic: definitions

A sentence is valid, if it is true in every model
(the truth table is all Ts)

For example: “It is raining or it is not raining”
Logically:

A sentence is satisfiable if it has at least one
model that makes it true (one T in truth table)

Logic: inference

We can use validity to say:
α╞ β iff the sentence (α → β) is valid

... or alternatively...
α╞ β iff (α AND ┐β) is not satisfiable

This second version is basically contradiction
(technically called contrapositive)

You assume the opposite (┐β) to reach a
conclusion that this is impossible with α

same as last time, by needing β true if α true

Logic: inference

We have these rules for inference:
1. Any logically equivalent statements

(e.g.)

2. Modus ponens: (top is two
 sentences)
3. And-elimination:

We repeatedly apply these rules until we reach
the statement we desire

know top
can deduce bottom

Logic: inference

For example consider the following KB:

We can deduce D by:
1. And elimination on first (KB1)

2. Modus ponens with KB2 and 1.

3. And elimination on 2.

Logic: inference

You try it! Deduce D:

Logic: inference

You try it! Deduce D:

1. Equivalence of “iff” in KB2

2. And elimination on 1.

3. Modus ponens with KB1 and 2.

4. De Morgan's equivalence
5. And-elim. 4.

Logic: inference

You try it! Deduce C:

Logic: inference

You try it! Deduce C:

Start with:

... but we actually get stuck here

We know we can apply either or
 , but not which one
This is a limitation of our rules so far, they are
not complete!

Logic: inference

For example (mindsweep):

Game rules (one of them): (adjacent is bomb)

KB from current game state:

Let's use inference to deduce P2,2,B

Logic: inference

1. Use And-elimination on KB state to get:

2. Use modus ponens with above and rules:

3. ... Uh oh... We are stuck
These set of rules are not complete (from last
time we know we can deduce this)

Logic: inference

You can represent all propositional logic with
truth tables and brute force solve

This grows exponentially in the number
of symbols (linearly by number of sentences)

Using these logic rules, we can can ignore
irrelevant sentences (the runtime is bounded by
symbol connectivity, not number of sentences)

We could do a search on the inference space,
where each action is to try and apply an
inference rule

Logic: resolution

Resolution is when two complementary literals
cancel each other out:

Generally speaking, you have to merge the two
sentences without the complementary ones:

Unlike our previous inferences, resolution is
complete (for any α & β can tell whether α╞ β)

Logic: resolution

Assume KB: , Entails (not A)?
First, change to ORs:

There are two ways to use inference:
1. Directly:

2. Use contradiction (see earlier slide):
1.
2.
3.

Logic: resolution

The algorithmic way is to use contradiction
1. Cancel out any literals possible and generate

new rules
2. Repeat 1 until:

1. (entails) A “blank” sentence derived
involving the contradiction (or child)

2. (not entails) No more possible resolutions

(book fig. 7.13
is better)

Logic: resolution

Back to minesweep!

Need to FOIL right hand side (yuck)

And again (pull out only important term)(RED)

Logic: resolution

Only thing left is P2,2,B (direct method)

We can conclude KB entails P2,2,B

However, to use resolution we need the
sentences to be in Conjunctive normal form

This means: (For example:)
1. Negations (“not”) right next to symbol
2. Format: (sentence of ORs) AND (more ORs)

Logic: resolution

AND, OR and “not” are fully expressive,
so we lose no expressive power with
“implies” and “iff” missing

In the examples, I knew which parts were
important to the problem and which were not

An algorithmic way is to just brute force check
all pairs of clauses that have a conflicting term
(i.e. has B conflicting)

Logic: resolution

Algorithm: (using contrapositive)
1. List clauses in CNF with (KB AND ┐α)
2. For all p = pair of clauses
3. For all conflicts in pair
4. Add merged clause without conflict
5. If(merged clause is empty)
6. return “KB entails α”
7. Repeat 2 until no new clauses added
8. return “KB does not entail α”

Logic: resolution

Run this algorithm for both α and β:
KB =

α = , KB entails α?

β = , KB entails β?

Logic: resolution

Run this algorithm for both α and β:
KB =

α = , KB entails α?
Entails!

β = , KB entails β?
Does not entail

Logic: resolution

Consider these sentences:

They each have complementary literals for
resolution (i.e. (not A) in first and A in second)

However, if you “resolve” these A’s you get:
 , which is a tautology (not helpful)

Think of the Venn diagram:
(cannot reduce to single var)

Logic: wrap-up

There are “local search” hill-climbing versions
of solving propositional logic

These are useful if there are a large number of
solutions available for it to find

Otherwise there are some modifications we can
make to our recursive truth-table method to
improve performance (similar to how we
improved DFS in CSP)

Logic: wrap-up

One major factor of propositional logic is how
many symbols to sentences/clauses there are

If there are too few sentences, it is easy to
find the answer... too many and trivially fails

Logic: wrap-up

Typically to actually solve a full problem,
(and not just one part) we need many more
sentences to impose “obvious” rules, such as:
1. The state can only be in one place at one

time (i.e. in mindsweep a cell cannot be both
a “2” and a “4”)

2. Full search has a time component, and we
must ensure by default no symbols are
allowed to “change” between time steps

Logic: wrap-up

So far we have talked about pure inference to
solve problems, but we can mix in search

Searches are much faster than logical thinking,
so we should use for straightforward parts

For propositional logic, the default branching
factor is 2 (true or false) but a single inference
can reduce this factor to 1 for multiple depths

Logic: wrap-up

As propositional are all only True or False
proposals about the environment, we typically
need all combinations of variables for all time

This rapidly grows the problem exponentially,
and makes larger problems not feasible

This would not be the case if we had a more
expressive form of logic (which we will talk
about next)

	Slide 1
	Slide 4
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

