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Outline

♦ Reducing first-order inference to propositional inference

♦ Unification

♦ Generalized Modus Ponens

♦ Forward and backward chaining

♦ Logic programming

♦ Resolution
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A brief history of reasoning

450b.c. Stoics propositional logic, inference (maybe)
322b.c. Aristotle “syllogisms” (inference rules), quantifiers
1565 Cardano probability theory (propositional logic + uncertainty)
1847 Boole propositional logic (again)
1879 Frege first-order logic
1922 Wittgenstein proof by truth tables
1930 Gödel ∃ complete algorithm for FOL
1930 Herbrand complete algorithm for FOL (reduce to propositional)
1931 Gödel ¬∃ complete algorithm for arithmetic
1960 Davis/Putnam “practical” algorithm for propositional logic
1965 Robinson “practical” algorithm for FOL—resolution
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Universal instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:

∀ v α

Subst({v/g}, α)

for any variable v and ground term g

E.g., ∀ x King(x) ∧Greedy(x) ⇒ Evil(x) yields

King(John) ∧Greedy(John) ⇒ Evil(John)
King(Richard) ∧Greedy(Richard) ⇒ Evil(Richard)
King(Father(John)) ∧Greedy(Father(John)) ⇒ Evil(Father(John))

...
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Existential instantiation (EI)

For any sentence α, variable v, and constant symbol k
that does not appear elsewhere in the knowledge base:

∃ v α

Subst({v/k}, α)

E.g., ∃ x Crown(x) ∧OnHead(x, John) yields

Crown(C1) ∧OnHead(C1, John)

provided C1 is a new constant symbol, called a Skolem constant

Another example: from ∃ x d(xy)/dy = xy we obtain

d(ey)/dy = ey

provided e is a new constant symbol
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Existential instantiation contd.

UI can be applied several times to add new sentences;
the new KB is logically equivalent to the old

EI can be applied once to replace the existential sentence;
the new KB is not equivalent to the old,
but is satisfiable iff the old KB was satisfiable
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Reduction to propositional inference

Suppose the KB contains just the following:

∀x King(x) ∧Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)

Instantiating the universal sentence in all possible ways, we have

King(John) ∧Greedy(John) ⇒ Evil(John)
King(Richard) ∧Greedy(Richard) ⇒ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard, John)

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John),King(Richard) etc.
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Reduction contd.

Claim: a ground sentence∗ is entailed by new KB iff entailed by original KB

Claim: every FOL KB can be propositionalized so as to preserve entailment

Idea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many ground terms,
e.g., Father(Father(Father(John)))

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB,
it is entailed by a finite subset of the propositional KB

Idea: For n = 0 to ∞ do
create a propositional KB by instantiating with depth-n terms
see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936), entailment in FOL is semidecidable
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Problems with propositionalization

Propositionalization seems to generate lots of irrelevant sentences.
E.g., from

∀x King(x) ∧Greedy(x) ⇒ Evil(x)
King(John)
∀ y Greedy(y)
Brother(Richard, John)

it seems obvious that Evil(John), but propositionalization produces lots of
facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates and n constants, there are p · nk instantiations

With function symbols, it gets nuch much worse!
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Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John, y/John} works

Unify(α, β) = θ if αθ = βθ

p q θ
Knows(John, x) Knows(John, Jane)
Knows(John, x) Knows(y, OJ)
Knows(John, x) Knows(y, Mother(y))
Knows(John, x) Knows(x, OJ)
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Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John, y/John} works

Unify(α, β) = θ if αθ = βθ

p q θ
Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, OJ)
Knows(John, x) Knows(y, Mother(y))
Knows(John, x) Knows(x, OJ)

Chapter 9 11



Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John, y/John} works

Unify(α, β) = θ if αθ = βθ

p q θ
Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, OJ) {x/OJ, y/John}
Knows(John, x) Knows(y, Mother(y))
Knows(John, x) Knows(x, OJ)
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Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John, y/John} works

Unify(α, β) = θ if αθ = βθ

p q θ
Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, OJ) {x/OJ, y/John}
Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x, OJ)
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Unification

We can get the inference immediately if we can find a substitution θ
such that King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John, y/John} works

Unify(α, β) = θ if αθ = βθ

p q θ
Knows(John, x) Knows(John, Jane) {x/Jane}
Knows(John, x) Knows(y, OJ) {x/OJ, y/John}
Knows(John, x) Knows(y, Mother(y)) {y/John, x/Mother(John)}
Knows(John, x) Knows(x, OJ) fail

Standardizing apart eliminates overlap of variables, e.g., Knows(z17, OJ)
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Generalized Modus Ponens (GMP)

p1
′, p2

′, . . . , pn
′, (p1 ∧ p2 ∧ . . . ∧ pn⇒ q)

qθ
where pi

′θ = piθ for all i

p1
′ is King(John) p1 is King(x)

p2
′ is Greedy(y) p2 is Greedy(x)

θ is {x/John, y/John} q is Evil(x)
qθ is Evil(John)

GMP used with KB of definite clauses (exactly one positive literal)
All variables assumed universally quantified
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Soundness of GMP

Need to show that

p1
′, . . . , pn

′, (p1 ∧ . . . ∧ pn⇒ q) |= qθ

provided that pi
′θ = piθ for all i

Lemma: For any definite clause p, we have p |= pθ by UI

1. (p1 ∧ . . . ∧ pn⇒ q) |= (p1 ∧ . . . ∧ pn⇒ q)θ = (p1θ ∧ . . . ∧ pnθ ⇒ qθ)

2. p1
′, . . . , pn

′ |= p1
′ ∧ . . . ∧ pn

′ |= p1
′θ ∧ . . . ∧ pn

′θ

3. From 1 and 2, qθ follows by ordinary Modus Ponens
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Example knowledge base

The law says that it is a crime for an American to sell weapons to hostile
nations. The country Nono, an enemy of America, has some missiles, and
all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal
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Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
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Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧Weapon(y)∧Sells(x, y, z)∧Hostile(z)⇒ Criminal(x)

Nono . . . has some missiles

Chapter 9 19



Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧Weapon(y)∧Sells(x, y, z)∧Hostile(z)⇒ Criminal(x)

Nono . . . has some missiles, i.e., ∃ x Owns(Nono, x) ∧Missile(x):
Owns(Nono,M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West
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Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧Weapon(y)∧Sells(x, y, z)∧Hostile(z)⇒ Criminal(x)

Nono . . . has some missiles, i.e., ∃ x Owns(Nono, x) ∧Missile(x):
Owns(Nono,M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West
∀x Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Missiles are weapons:
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Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧Weapon(y)∧Sells(x, y, z)∧Hostile(z)⇒ Criminal(x)

Nono . . . has some missiles, i.e., ∃ x Owns(Nono, x) ∧Missile(x):
Owns(Nono,M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West
∀x Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Missiles are weapons:
Missile(x)⇒ Weapon(x)

An enemy of America counts as “hostile”:
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Example knowledge base contd.

. . . it is a crime for an American to sell weapons to hostile nations:
American(x)∧Weapon(y)∧Sells(x, y, z)∧Hostile(z)⇒ Criminal(x)

Nono . . . has some missiles, i.e., ∃ x Owns(Nono, x) ∧Missile(x):
Owns(Nono,M1) and Missile(M1)

. . . all of its missiles were sold to it by Colonel West
∀x Missile(x) ∧Owns(Nono, x) ⇒ Sells(West, x,Nono)

Missiles are weapons:
Missile(x)⇒ Weapon(x)

An enemy of America counts as “hostile”:
Enemy(x, America) ⇒ Hostile(x)

West, who is American . . .
American(West)

The country Nono, an enemy of America . . .
Enemy(Nono, America)
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Forward chaining algorithm

function FOL-FC-Ask(KB,α) returns a substitution or false

repeat until new is empty

new←{}

for each sentence r in KB do

( p1 ∧ . . . ∧ pn ⇒ q)←Standardize-Apart(r)

for each θ such that (p1 ∧ . . . ∧ pn)θ = (p ′1 ∧ . . . ∧ p ′n)θ

for some p ′1, . . . , p
′
n in KB

q ′←Subst(θ, q)

if q ′ is not a renaming of a sentence already in KB or new then do

add q ′ to new

φ←Unify(q ′,α)

if φ is not fail then return φ

add new to KB

return false
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Forward chaining proof

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)
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Forward chaining proof

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1) Sells(West,M1,Nono)
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Forward chaining proof

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)
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Properties of forward chaining

Sound and complete for first-order definite clauses
(proof similar to propositional proof)

Datalog = first-order definite clauses + no functions (e.g., crime KB)
FC terminates for Datalog in poly iterations: at most p · nk literals

May not terminate in general if α is not entailed

This is unavoidable: entailment with definite clauses is semidecidable
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Efficiency of forward chaining

Simple observation: no need to match a rule on iteration k
if a premise wasn’t added on iteration k − 1

⇒ match each rule whose premise contains a newly added literal

Matching itself can be expensive

Database indexing allows O(1) retrieval of known facts
e.g., query Missile(x) retrieves Missile(M1)

Matching conjunctive premises against known facts is NP-hard

Forward chaining is widely used in deductive databases
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Hard matching example

Victoria

WA

NT

SA

Q

NSW

V

T

Diff(wa, nt) ∧ Diff(wa, sa) ∧

Diff(nt, q)Diff(nt, sa) ∧

Diff(q, nsw) ∧ Diff(q, sa) ∧

Diff(nsw, v) ∧ Diff(nsw, sa) ∧

Diff(v, sa) ⇒ Colorable()

Diff(Red, Blue) Diff(Red, Green)

Diff(Green,Red) Diff(Green,Blue)

Diff(Blue,Red) Diff(Blue,Green)

Colorable() is inferred iff the CSP has a solution
CSPs include 3SAT as a special case, hence matching is NP-hard
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Backward chaining algorithm

function FOL-BC-Ask(KB, goals,θ) returns a set of substitutions

inputs: KB, a knowledge base

goals, a list of conjuncts forming a query (θ already applied)

θ, the current substitution, initially the empty substitution { }

local variables: answers, a set of substitutions, initially empty

if goals is empty then return {θ}

q ′←Subst(θ,First(goals))

for each sentence r in KB

where Standardize-Apart(r) = ( p1 ∧ . . . ∧ pn ⇒ q)

and θ′←Unify(q, q ′) succeeds

new goals← [ p1, . . . , pn|Rest(goals)]

answers←FOL-BC-Ask(KB,new goals,Compose(θ′,θ)) ∪ answers

return answers
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Backward chaining example

Criminal(West)
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Backward chaining example

Criminal(West)

Weapon(y)American(x) Sells(x,y,z) Hostile(z)

{x/West}
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Backward chaining example

Criminal(West)

Weapon(y) Sells(x,y,z) Hostile(z)

{x/West}

{ }

American(West)
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Backward chaining example

Hostile(Nono)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{ }

Sells(x,y,z) Hostile(z)

{x/West}
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Backward chaining example

Hostile(Nono)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{ }

Sells(x,y,z) Hostile(z)

 y/M1{ }

{x/West, y/M1}
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Backward chaining example

Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

 y/M1{ }

{ } z/Nono{ }

Hostile(z)

{x/West, y/M1, z/Nono}
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Backward chaining example

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

 y/M1{ } { }{ }{ }

{ } z/Nono{ }

{x/West, y/M1, z/Nono}
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Properties of backward chaining

Depth-first recursive proof search: space is linear in size of proof

Incomplete due to infinite loops
⇒ fix by checking current goal against every goal on stack

Inefficient due to repeated subgoals (both success and failure)
⇒ fix using caching of previous results (extra space!)

Widely used (without improvements!) for logic programming
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Logic programming

Sound bite: computation as inference on logical KBs

Logic programming Ordinary programming
1. Identify problem Identify problem
2. Assemble information Assemble information
3. Tea break Figure out solution
4. Encode information in KB Program solution
5. Encode problem instance as facts Encode problem instance as data
6. Ask queries Apply program to data
7. Find false facts Debug procedural errors

Should be easier to debug Capital(NewY ork, US) than x := x + 2 !
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Prolog systems

Basis: backward chaining with Horn clauses + bells & whistles
Widely used in Europe, Japan (basis of 5th Generation project)
Compilation techniques ⇒ approaching a billion LIPS

Program = set of clauses = head :- literal1, . . . literaln.

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Efficient unification by open coding
Efficient retrieval of matching clauses by direct linking
Depth-first, left-to-right backward chaining
Built-in predicates for arithmetic etc., e.g., X is Y*Z+3

Closed-world assumption (“negation as failure”)
e.g., given alive(X) :- not dead(X).

alive(joe) succeeds if dead(joe) fails
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Prolog examples

Depth-first search from a start state X:

dfs(X) :- goal(X).

dfs(X) :- successor(X,S),dfs(S).

No need to loop over S: successor succeeds for each

Appending two lists to produce a third:

append([],Y,Y).

append([X|L],Y,[X|Z]) :- append(L,Y,Z).

query: append(A,B,[1,2]) ?

answers: A=[] B=[1,2]

A=[1] B=[2]

A=[1,2] B=[]
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Resolution: brief summary

Full first-order version:

ℓ1 ∨ · · · ∨ ℓk, m1 ∨ · · · ∨mn

(ℓ1 ∨ · · · ∨ ℓi−1 ∨ ℓi+1 ∨ · · · ∨ ℓk ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn)θ

where Unify(ℓi,¬mj) = θ.

For example,

¬Rich(x) ∨ Unhappy(x)
Rich(Ken)

Unhappy(Ken)

with θ = {x/Ken}

Apply resolution steps to CNF (KB ∧ ¬α); complete for FOL
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Conversion to CNF

Everyone who loves all animals is loved by someone:
∀x [∀ y Animal(y) ⇒ Loves(x, y)] ⇒ [∃ y Loves(y, x)]

1. Eliminate biconditionals and implications

∀x [¬∀ y ¬Animal(y) ∨ Loves(x, y)] ∨ [∃ y Loves(y, x)]

2. Move ¬ inwards: ¬∀x, p ≡ ∃ x ¬p, ¬∃x, p ≡ ∀x ¬p:

∀x [∃ y ¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃ y Loves(y, x)]
∀x [∃ y ¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]
∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ y Loves(y, x)]
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Conversion to CNF contd.

3. Standardize variables: each quantifier should use a different one

∀x [∃ y Animal(y) ∧ ¬Loves(x, y)] ∨ [∃ z Loves(z, x)]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

∀x [Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

5. Drop universal quantifiers:

[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

6. Distribute ∧ over ∨:

[Animal(F (x)) ∨ Loves(G(x), x)] ∧ [¬Loves(x, F (x)) ∨ Loves(G(x), x)]
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Resolution proof: definite clauses

American(West)

Missile(M1)

Missile(M1)

Owns(Nono,M1)

Enemy(Nono,America) Enemy(Nono,America)

Criminal(x)Hostile(z)LSells(x,y,z)LWeapon(y)LAmerican(x)L > > > >

Weapon(x)Missile(x)L >

Sells(West,x,Nono)Missile(x)L Owns(Nono,x)L> >

Hostile(x)Enemy(x,America)L >

Sells(West,y,z)LWeapon(y)LAmerican(West)L > > Hostile(z)L>

Sells(West,y,z)LWeapon(y)L > Hostile(z)L>

Sells(West,y,z)L> Hostile(z)L>L Missile(y)

Hostile(z)L>L Sells(West,M1,z)

> > L Hostile(Nono)L Owns(Nono,M1)L Missile(M1)

> L Hostile(Nono)L Owns(Nono,M1)

L Hostile(Nono)

Criminal(West)L
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