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Outline

♦ Hill-climbing

♦ Simulated annealing

♦ Genetic algorithms (briefly)

♦ Local search in continuous spaces (very briefly)
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Iterative improvement algorithms

In many optimization problems, path is irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetable

In such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it

Constant space, suitable for online as well as offline search
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Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thou-
sands of cities
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Example: n-queens

Put n queens on an n× n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts

h = 5 h = 2 h = 0

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n = 1million
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Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

function Hill-Climbing(problem) returns a state that is a local maximum

inputs: problem, a problem

local variables: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])

loop do

neighbor← a highest-valued successor of current

if Value[neighbor] ≤ Value[current] then return State[current]

current←neighbor

end
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Hill-climbing contd.

Useful to consider state space landscape

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves escape from shoulders loop on flat maxima
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Simulated annealing

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function Simulated-Annealing(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to “temperature”

local variables: current, a node

next, a node

T, a “temperature” controlling prob. of downward steps

current←Make-Node(Initial-State[problem])

for t← 1 to ∞ do

T← schedule[t]

if T = 0 then return current

next← a randomly selected successor of current

∆E←Value[next] – Value[current]

if ∆E > 0 then current←next

else current←next only with probability e∆ E/T
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Properties of simulated annealing

At fixed “temperature” T , state occupation probability reaches
Boltzman distribution

p(x) = αe
E(x)
kT

T decreased slowly enough =⇒ always reach best state x∗

because e
E(x∗)

kT /e
E(x)
kT = e

E(x∗)−E(x)
kT ≫ 1 for small T

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.
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Local beam search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!
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Genetic algorithms

= stochastic local beam search + generate successors from pairs of states
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Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

+ =

GAs 6= evolution: e.g., real genes encode replication machinery!
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Continuous state spaces

Suppose we want to site three airports in Romania:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f(x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to nearest airport

Discretization methods turn continuous space into discrete space,
e.g., empirical gradient considers ±δ change in each coordinate

Gradient methods compute
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to increase/reduce f , e.g., by x← x + α∇f(x)

Sometimes can solve for ∇f(x) = 0 exactly (e.g., with one city).
Newton–Raphson (1664, 1690) iterates x← x−H−1

f (x)∇f(x)
to solve ∇f(x) = 0, where Hij = ∂2f/∂xi∂xj
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