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ABSTRACT
Ensuring the freshness of client data is a fundamental problem for
applications that rely on cloud infrastructure to store data and medi-
ate sharing. Thialfi is a notification service developed at Google to
simplify this task. Thialfi supports applications written in multiple
programming languages and running on multiple platforms, e.g.,
browsers, phones, and desktops. Applications register their inter-
est in a set of shared objects and receive notifications when those
objects change. Thialfi servers run in multiple Google data centers
for availability and replicate their state asynchronously. Thialfi’s
approach to recovery emphasizes simplicity: all server state is soft,
and clients drive recovery and assist in replication. A principal goal
of our design is to provide a straightforward API and good seman-
tics despite a variety of failures, including server crashes, commu-
nication failures, storage unavailability, and data center failures.

Evaluation of live deployments confirms that Thialfi is scalable, ef-
ficient, and robust. In production use, Thialfi has scaled to millions
of users and delivers notifications with an average delay of less than
one second.

Categories and Subject Descriptors
C.2.4 [Computer-Communications Networks]: Distributed Sys-
tems; D.4.5 [Operating Systems]: Reliability

General Terms
Distributed Systems, Scalability, Reliability, Performance

1. INTRODUCTION
Many Internet-scale applications are structured around data shared
between multiple users, their devices, and cloud infrastructure. Client
applications maintain a local cache of their data that must be kept
fresh. For example, if a user changes the time of a meeting on a cal-
endar, that change should be quickly reflected on the devices of all
attendees. Such scenarios arise frequently at Google. Although in-
frastructure services provide reliable storage, there is currently no
general-purpose mechanism to notify clients that shared data has
changed. In practice, many applications periodically poll to detect

changes, which results in lengthy delays or significant server load.
Other applications develop custom notification systems, but these
have proven difficult to generalize and cumbersome to maintain.

This paper presents Thialfi, a highly scalable notification system
developed at Google for user-facing applications with hundreds
of millions of users and billions of objects. Thialfi provides sub-
second notification delivery in the common case and clear seman-
tics despite failures, even of entire data centers. Thialfi supports ap-
plications written in a variety of languages (C++, Java, JavaScript)
and running on a diverse set of platforms such as web browsers,
mobile phones, and desktops. To achieve reliability, Thialfi relies
on clients to drive recovery operations, avoiding the need for hard
state at the server, and our API is structured so that error handling
is incorporated into the normal operation of the application.

Thialfi models shared data as versioned objects, which are stored
at a data center and cached at clients. Clients register with Thialfi
to be notified when an object changes, and the application’s servers
notify Thialfi when updates occur. Thialfi propagates notifications
to registered clients, which synchronize their data with application
servers. Crucially, Thialfi delivers only the latest version number
to clients, not application data, which simplifies our design and
promotes scalability.

Thialfi’s implementation consists of a library embedded in client
applications and two types of servers that run in Google data cen-
ters. Matchers are partitioned by object and receive and forward
notifications; Registrars are partitioned by client and manage client
registration and presence state. The client library communicates
with the servers over a variety of application-specific channels; Thi-
alfi protocols provide end-to-end reliability despite channel losses
or message reordering. Finally, a best-effort replication protocol
runs between Thialfi data centers, and clients correct out-of-date
servers during migration.

A principal feature of Thialfi’s design is reliability in the presence
of a wide variety of faults. The system ensures that clients even-
tually learn of the latest version of each registered object, even if
the clients were unreachable at the time the update occurred. At
large scale, ensuring even eventual delivery is challenging—Thialfi
is designed to operate at the scale of hundreds of millions of clients,
billions of objects, and hundreds of thousands of changes per sec-
ond. Since applications are replicated across data centers for relia-
bility, notifications may need to be routed over multiple unreliable
communication channels to reach all clients. During propagation, a
client may become unavailable or change its server affinity. Clients
may be offline. Servers, storage systems, or even entire data cen-
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ters may become temporarily unavailable. Thialfi handles these
issues internally, freeing application developers from the need to
cope with them as special cases. Indeed, Thialfi remains correct
even when all server state is discarded. In our API, all failures
manifest as signals that objects or registrations have become stale
and should be refreshed, and this process reconstructs state at the
server if necessary.

Like many infrastructure services, Thialfi is designed for opera-
tional simplicity: the same aspects of our design that provide re-
liability (e.g., tolerating data center failures) also make the system
easier to run in production. Our techniques emphasize simplicity
but do not provide perfect availability. While Thialfi remains cor-
rect, recovering from some failures results in partial unavailability,
and we discuss these scenarios in our design.

Thialfi is a production service that is in active use by millions of
people running a diverse set of Google’s applications. We focus on
two: Chrome and Contacts. These show the diversity of Thialfi us-
age, which includes desktop applications synchronizing data with
the cloud (Chrome) as well as web/mobile applications sharing data
between devices (Contacts). In both cases, Thialfi has simplified
application design and improved efficiency substantially.

Further evaluation of Thialfi confirms its scalability, efficiency, and
robustness. In production use, Thialfi has scaled to millions of
users. Load testing shows that Thialfi’s resource consumption scales
directly with usage. Injecting failures shows that the cost of recov-
ery is modest; despite the failure of an entire data center, Thialfi
can rapidly migrate clients to remaining data centers with limited
over-provisioning.

To summarize, we make the following contributions:
• We provide a system robust to the full and partial failures com-

mon to infrastructure services. Thialfi is one of the first systems
to demonstrate robustness to the complete failure of a data center
and to the partial unavailability of infrastructure storage.
• Our design provides reliability at Internet scale without hard

server state. Thialfi ensures that clients eventually learn the latest
versions of registered objects even if all server state is dropped.
• Thialfi’s API unifies error recovery with ordinary operation. No

separate error-handling code paths are required, greatly simpli-
fying integration and reasoning about correctness.
• We integrate Thialfi with several Google applications and demon-

strate the performance, scalability, and robustness of our design
for millions of users and thousands of notifications per second.

2. MOTIVATION AND REQUIREMENTS
This section describes an abstraction for a notification service with
requirements drawn from our experience at Google. Figure 1 shows
the abstraction. Since Internet applications are separated into server
and client components, the service includes both an infrastructure
component and a client library. At the client, developers program
against the library’s API and make updates that modify shared data.
At the server, applications publish notifications, which the service
routes to appropriate clients. The remainder of this section de-
scribes how we arrived at this abstraction.

2.1 A Case for a Notification Service
Applications that share data among users and devices have a com-
mon need for notifications when data has changed. For example,
the Google Contacts application allows users to create, edit, and
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Figure 1: An abstraction for a client notification service.

share contact information through web, mobile, and desktop inter-
faces that communicate with servers running in Google’s data cen-
ters. If a contact changes, other devices should learn of the change
quickly. This is the essence of a notification service: informing in-
terested parties of changes to data in a reliable and timely manner.

Throughout the paper, we refer to application data as objects: named,
versioned entities for which users may receive notifications. For
example, a contacts application might model each user’s address
book as an object identified by that user’s email address, or the ap-
plication may model each contact as a separate object. Contacts
may be shared among users or a user’s devices. When the contact
list is changed, its version number increases, providing a simple
mechanism to represent changes.

In the absence of a general service, applications have developed
custom notification mechanisms. A widely used approach is for
each client to periodically poll the server for changes. While con-
ceptually simple and easy to implement, polling creates an unfor-
tunate tension between timeliness and resource consumption. Fre-
quent polling allows clients to learn of changes quickly but imposes
significant load on the server. And, most requests simply indicate
that no change has occurred.

An alternative is to push notifications to clients. However, ensuring
reliability in a push system is difficult: a variety of storage, net-
work, and server failures are common at Internet scale. Further,
clients may be disconnected when updates occur and remain of-
fline for days. Buffering messages indefinitely is infeasible. The
server’s storage requirements must be bounded, and clients should
not be overwhelmed by a flood of messages upon wakeup.

As a result of these challenges, push systems at Google are gen-
erally best-effort; developers must detect and recover from errors.
This is typically done via a low-frequency, backup polling mecha-
nism, again resulting in occasional, lengthy delays that are difficult
to distinguish from bugs.

2.2 Requirements
Summarizing our discussion above, a general notification service
should satisfy at least four requirements.

• Tracking. The service should track which clients are interested
in what data. Particularly for shared data, tracking a mapping
between clients and objects is a common need.

• Reliability. Notifications should be reliable. To the extent pos-
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Configuration Choices
Channel HTTP, XMPP, internal RPC (in DC)

Language Java, C++, JavaScript
Platform Web, mobile, native desktop apps
Storage Storage with inter-DC sync or async replication

Table 1: Configurations supported by Thialfi.

sible, application developers should not be burdened with error
detection and recovery mechanisms such as polling.

• End-to-end. Given an unreliable channel, the service must pro-
vide reliability in an end-to-end manner; i.e., it must include a
client-side component.

• Flexibility. To be widely applicable, a notification service must
impose few restrictions on developers. It should support web,
desktop, and mobile applications written in a variety of lan-
guages for a variety of platforms. At the server, similar diversity
in storage and communication dependencies precludes tight in-
tegration with a particular software stack. We show the variety
of configurations that Thialfi supports in Table 1.

2.3 Design Alternatives
Before describing our system in detail, we first consider alternative
designs for a notification service.

Integrating notifications with the storage layer: Thialfi treats
each application’s storage layer as opaque. Updates to shared ob-
jects must be explicitly published, and applications must explicitly
register for notifications on shared objects. An alternative would
be to track object sharing at the storage layer and automatically
generate notifications when shared objects change. We avoid this
for two reasons. The first is diversity: while many applications
share a common need for notifications, applications use storage
systems with diverse semantics, data models, and APIs customized
to particular application requirements. We view the lack of a one-
size-fits-all storage system as fundamental, leading us to design
notifications as a separate component that is loosely coupled with
the storage layer. The second reason is complexity. Even though
automatically tracking object dependencies [22] may simplify the
programming model when data dependencies are complex (e.g.,
constructing webpages on-the-fly with data joins), such application
structures are difficult to scale and rare at Google. Requiring ex-
plicit object registrations and updates substantially simplifies our
design, and our experience has been that reasoning about object
registrations in our current applications is straightforward.

Reliable messaging from servers to clients: Reliable messaging
is a familiar primitive for developers. We argue for a different ab-
straction: a reliable notification of the latest version number of
an object. Why not reliable messaging? First, reliable messag-
ing is inappropriate when clients are often unavailable. Lengthy
queues accumulate while clients are offline, leading to a flood of
messages upon wakeup, and server resources are wasted if offline
clients never return. Second, message delivery is often application-
specific. Delivering application data requires adhering to diverse
security and privacy requirements, and different client devices re-
quire delivery in different formats (e.g., JSON for browsers, binary
for phones). Instead of reliable messaging, Thialfi provides reliable
signaling—the queue of notifications for each object is collapsed to
a single message, and old clients may be safely garbage-collected
without sacrificing reliability. Moreover, such an abstraction allows
Thialfi to remain loosely coupled with applications.

3. OVERVIEW
This section gives an overview of the Thialfi architecture and its
programming interface.

3.1 Model and Architecture
Thialfi models data in terms of object identifiers and their version
numbers. Objects are stored in each application’s backend servers,
not by Thialfi. Each object is named using a variable length byte
string of the application’s choosing (typically less than 32 bytes),
which resides in a private namespace for that application. Version
numbers (currently 64-bit) are chosen by applications and included
in the update published to Thialfi.

Application backends are required to ensure that version numbers
are monotonically increasing to ensure reliable delivery; i.e., in or-
der for Thialfi to reliably notify a client of an object’s latest version,
the latest version must be well-defined. Synchronous stores can
achieve this by incrementing a version number after every update,
for example. Asynchronous stores typically have some method of
eventually reconciling updates and reaching a commit point; such
stores can issue notifications to Thialfi afterwards. At Google, to
avoid modifying existing asynchronous backend stores, some ser-
vices simply inform Thialfi when updates reach one of the storage
replicas, using the current time at that replica as the version num-
ber. Although such services run the risk of missing updates due
to clock skew and conflicts, this is rare in practice. Clock skew in
the data center is typically low, conflicts are infrequent for many
applications, and replication delay is low (seconds).

As shown in Figure 1, Thialfi is comprised of a client library and
server infrastructure. We describe these components in turn.

Client library: The client library provides applications with a pro-
grammatic interface for registering for shared objects and receiving
notifications. The library speaks the Thialfi protocol and communi-
cates with the Thialfi infrastructure service running in data centers.
An application uses the Thialfi library to register for objects, and
the library invokes callbacks to inform the application of registra-
tion changes and to deliver notifications. For each notification, Thi-
alfi informs the application of the modified object’s identifier and
the latest version known. When the application receives a notifica-
tion, it synchronizes object data by talking directly with its servers:
Thialfi does not provide data synchronization.

Server infrastructure: In the data center, application servers ap-
ply updates and notify Thialfi when objects change. We provide a
Publisher library that application backends can embed. The pub-
lisher library call:

Publish(objectId, version, source)

ensures that all Thialfi data centers are notified of the change. When
present, the optional source parameter identifies the client that made
the change. (This ID is provided by the application client at startup
and is referred to as its application ID.) As an optimization, Thi-
alfi omits delivery of the notification to this client, since the client
already knows about the change.

Thialfi supports multiple communication channels to accommo-
date application diversity. For example, native applications may
use XMPP [27], while web applications typically use persistent
HTTP connections [17]. This support allows Thialfi to reuse an
application’s existing communication channel, an important capa-
bility given the high cost of maintaining a channel in certain con-
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// Client actions
interface NotificationClient {

Start(byte[] persistentState);
Register(ObjectId objectId, long version);
Unregister(ObjectId objectId);

}

// Client library callbacks
interface NotificationListener {
Notify(ObjectId objectId, long version);

NotifyUnknown(ObjectId objectId);

RegistrationStatusChanged(ObjectId objectId,
boolean isRegistered);

RegistrationFailure(ObjectId objectId,
boolean isTransient);

ReissueRegistrations();

WriteState(byte[] persistentState);
}

Figure 2: The Thialfi client API.
texts (e.g., mobile- or browser-based applications). Other than non-
corruption, Thialfi imposes few requirements—messages may be
dropped, reordered, or duplicated. Although rare, the channels
most commonly used by applications exhibit all of these faults.

3.2 Security
Given the diversity of authorization and authentication techniques
used by applications, Thialfi does not dictate a particular scheme
for securing notifications. Instead, we provide hooks for applica-
tions to participate in securing their data at various points in the
system. For example, Thialfi can make RPCs to application back-
ends to authorize registrations. If required, Thialfi can also make
authorization calls before sending notifications to clients.

Similarly, applications must provide a secure client-server channel
if confidentiality is required. Thialfi does not mandate a channel
security policy.

3.3 Client API and Usage
The Thialfi client library provides applications with the API shown
in Figure 2, and we refer to these calls throughout our discussion.

The NotificationClient interface lists the actions available via the
client library. The Start() method initializes the client, and the
Register() and Unregister() calls can be used to register/unregister
for object notifications. We point out that the client interface does
not include support for generating notifications. Publish() calls
must be made by the application backend.

The NotificationListener interface defines callbacks invoked by
the client library to notify the user application of status changes.
Application programmers using Thialfi’s library implement these
methods. When the library receives a notification from the server,
it calls Notify() with that object’s ID and new version number. In
scenarios where Thialfi does not know the version number of the
object (e.g., if Thialfi has never received any update for the object
or has deleted the last known version value for it), the client li-
brary uses the NotifyUnknown() call to inform the application that
it should refetch the object from the application store regardless of
its cached version. Internally, such notifications are assigned a se-

quence number by the server so that they can be reliably delivered
and acknowledged in the protocol.

The client library invokes RegistrationStatusChanged() to inform
the application of any registration information that it receives from
the server. It uses RegistrationFailure() to indicate a registration
operation failure to the application. A boolean, isTransient, indi-
cates whether the application should attempt to retry the operation.
ReissueRegistrations() allows the client library to request all reg-
istrations from the application. This call can be used to ensure that
Thialfi state matches the application’s intent, e.g., after a loss of
server state.

The WriteState() call is an optional method that provides Thialfi
with persistent storage on the client, if available. Client data stor-
age is application-specific; e.g., some applications have direct ac-
cess to the filesystem while others are limited to a browser cookie.
When a client receives its identifier from the server, the client li-
brary invokes WriteState() with an opaque byte string encoding
the identifier, which is then stored by the application and provided
to Thialfi during subsequent invocations of Start(). This allows
clients to resume using existing registrations and notification state.
Clients that do not support persistence are treated as new clients
after each restart.

4. DESIGN AND IMPLEMENTATION
This section describes the design and implementation of Thialfi.
We highlight several key techniques.

No hard server state: Thialfi operates on registration state (i.e.,
which clients care about which objects) and notification state (the
latest known version of each object). The Thialfi client library is
responsible for tracking the registration state and updating servers
in the event of a discrepancy, so loss of server-side state does not
jeopardize correctness. Moreover, while Thialfi makes a substantial
effort to deliver “useful” notifications at specific version numbers,
it is free to deliver spurious notifications, and notifications may be
associated with an unknown version. This flexibility allows notifi-
cation state to be discarded, provided the occurrence of the drop is
noted.

Efficient I/O through multiple views of state: The registration
and notification state in Thialfi consists of relations between clients
and objects. There is no clear advantage to choosing either client
ID or object ID as the primary key for this state: notifications up-
date a single object and multiple clients, while registrations update
a single client and multiple objects. To make processing of each op-
eration type simple and efficient, we maintain two separate views
of the state, one indexed by client ID and one by object ID, allow-
ing each type of operation to be performed via a single write to
one storage location in one view. The remaining view is brought
up-to-date asynchronously.

Idempotent operations only: Thialfi is designed so that any server-
side operation can be safely repeated. Every operation commits at
the server after a single write to storage, allowing aggressive batch-
ing of writes. Any dependent changes are performed in the back-
ground, asynchronously. Avoiding overwrites fosters robustness;
operations are simply retried until they succeed.

Buffering to cope with partial storage availability: While data
corruption is uncommon, large-scale storage systems do not have
perfect availability. Writes to some storage regions may fail tran-
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Figure 3: Overall architecture of Thialfi.

siently. To prevent this transient storage unavailability from cas-
cading to application backends, Thialfi buffers failed notification
writes at available storage locations, migrating buffered state to its
appropriate location when possible.

Figure 3 shows the major components of Thialfi. Bridge servers
are stateless, randomly load-balanced tasks that consume a feed
of application-specific update messages from Google’s infrastruc-
ture pub/sub service, translate them into a standard notification for-
mat, and assemble them into batches for delivery to Matcher tasks.
Matchers consume notifications for objects, match them with the
set of registered clients, and forward them to the Registrar for reli-
able delivery to clients. Matchers are partitioned over the set of ob-
jects and maintain a view of state indexed by object ID. Registrars
track clients, process registrations, and reliably deliver notifications
using a view of state indexed by client ID.

The remainder of this section describes our design in stages, start-
ing with a simplified version of Thialfi that operates entirely in
memory and in one data center only. We use this simplified de-
sign to explain the Thialfi protocol and to describe why discarding
Thialfi’s server state is safe. We then extend the in-memory de-
sign to use persistent storage, reducing the cost of recovering failed
servers. Finally, we add replication in order to improve recovery
from the failure of entire data centers.

4.1 In-memory Design
An in-memory version of Thialfi stores client and object state in the
memory of the Registrar and Matcher servers. As mentioned above,
clients are partitioned over Registrar servers, and objects are parti-
tioned over Matcher servers. In order to ensure roughly uniform
distribution of load, each client and object is assigned a partition-
ing key. This key is computed by prepending a hash of the client or
object ID to the ID itself. We statically partition this keyspace into
contiguous ranges; one range is assigned to each server. If a server
crashes or reboots, its state is lost and must be reconstructed from
scratch.

Aside from lack of persistence and support for multiple data cen-
ters, this design is identical to that deployed at Google. We next
describe the specific state maintained.

4.1.1 In-memory State
Registrar: For each client, the Registrar servers maintain two sets:
1) registrations (objects of interest to the client) and 2) pending no-
tifications (notifications not yet acknowledged by the client). They
also maintain a monotonically-increasing sequence number for each
client, used to pick an ordering for registration operations and to
generate version numbers for unknown-version notifications.

Matcher: For each object, Matcher servers store the latest version
number provided by the application backend. Matcher servers also
maintain a copy of the registered clients for each object from the
Registrar; this copy is updated asynchronously. We refer to the
combined Matcher and Registrar state as the C/O-Cache (Client
and Object cache).

Thialfi components that we call Propagators asynchronously prop-
agate state between Matchers and Registrars. The Registrar Prop-
agator copies client registrations to the Matcher, and the Matcher
Propagator copies new notifications to the Registrar.

Both Matchers and Registrars maintain a set of pending operations
to perform for objects and clients; i.e., propagation and delivery of
(un)registrations and notifications. The state maintained by each
server thus decomposes into two distinct parts: the C/O-Cache and
a pending operation set.

4.1.2 Client Token Management
Thialfi identifies clients using client tokens issued by Registrars.
Tokens are composed of two parts: client identifiers and session
identifiers. Tokens are opaque to clients, which store them for in-
clusion in each subsequent message. A client identifier is unique
and persists for the lifetime of the client’s state. A session identi-
fier binds a client to a particular Thialfi data center and contains the
identity of the data center that issued the token.

A client acquires tokens via a handshake protocol, in which the
Registrar creates an entry for the client’s state. If the client later
migrates to another data center, the Registrar detects that the token
was issued elsewhere and informs the client to repeat the handshake
protocol with the current data center. When possible, the new token
reuses the existing client identifier. A client may thus acquire many
session identifiers during its interactions with Thialfi, although it
holds only one client token (and thus one session identifier) at any
given time.

The Thialfi client library sends periodic heartbeat messages to the
Registrar to indicate that it is online (a Registrar only sends notifi-
cations to online clients). In the current implementation, the heart-
beat interval is 20 minutes, and the Registrar considers a client to
be offline if it has not received any message from the client for 80
minutes. Certain channels inform Thialfi in a best-effort manner
when a client disconnects, allowing the Registrar to mark the client
offline more quickly. Superficially, these periodic heartbeats might
resemble polling. However, they are designed to be extremely
lightweight: the messages are small, and processing only requires a
single in-memory operation in the common case when the client is
already online. Thus, unlike application-level polling, they do not
pose a significant scalability challenge.

4.1.3 Registration Operation
Once a client has completed the initial handshake, it is able to exe-
cute registrations. When an application calls Register(), the client
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Figure 4: Object registration in Thialfi.

library queues a message to send to the Registrar. (As with all pro-
tocol messages, the application dispatches outgoing registrations
asynchronously using its channel.) An overview of registration is
shown in Figure 4.

1. The client library sends a registration message to the Registrar
with the object identifier.

2. The Registrar picks an ordering for the registration by assign-
ing it a sequence number, using the sequence number it main-
tains for the issuing client. The Registrar writes the registra-
tion to the client record and adds a new entry to the pending
operation set.

3. Subsequently, the Registrar Propagator attempts to forward
the registration and the application ID of the registering client
to the Matcher responsible for the object via an RPC, and
the Matcher updates the copy of the registration in its object
cache. The Registrar Propagator repeats this until either prop-
agation succeeds or its process crashes.

4. After propagation succeeds, the Registrar reads the latest ver-
sion of the object from the Matcher (which reads the versions
from its object cache) and writes a pending notification for it
into the client cache (i.e., updates its copy of the latest ver-
sion). We call this process Registrar post-propagation. If no
version is known, the Registrar generates an unknown-version
notification for the object with the version field set using the
sequence number maintained for the client.

5. The Registrar sends a message to the client confirming the
registration and removes the operation from the pending set.

Clients unregister using an analogous process. To keep the regis-
trations at the client and the Registrar in sync, Thialfi uses a Reg-
istration Sync Protocol. Each message from the client contains a
digest of the client’s registered objects, and each message from the
server contains the digest of the client’s registrations known to the
server (in our current implementation, we compute the digest using
HMAC-SHA1 [10]). If the client or the server detects a discrepancy
at any point, the client resends its registrations to the server. If the
server detects the problem, it requests that the client resend them.
To support efficient synchronization for large numbers of objects,
we have implemented optional support for Merkle Trees [18], but
no application currently using Thialfi has required this mechanism.

The client library keeps track of the application’s intended regis-
trations via registration/unregistration API calls. To preserve the
registration state across application restarts, the library could write
all registrations to the local disk using the WriteState() call (Sec-
tion 3.3). To simplify persistence requirements, however, Thialfi
relies on applications to restate intended registrations on restart.
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Figure 5: Notification delivery in Thialfi.

When a client restarts, the client library invokes ReissueRegistra-
tions(). The library then recomputes the digest and sends it as part
of the regular communication with the server (e.g., in heartbeats).
Any discrepancy in the registrations is detected and resolved using
the Registration Sync Protocol discussed above. In the normal case
when digests match, no registrations are resent to the server.

4.1.4 Notification Operation
As users modify data, client applications send updates to applica-
tion servers in the data center. Application servers apply the up-
dates and publish notifications to be delivered by Thialfi. Figure 5
shows the sequence of operations by which Thialfi delivers notifi-
cations to registered clients.

1. The application server updates its authoritative copy of user
data and notifies Thialfi of the new version number. Appli-
cations publish notifications using a library that ensures each
published notification is received by all data centers running
Thialfi. Currently, we use an internal Google infrastructure
publish/subscribe service to disseminate messages to data cen-
ters. The pub/sub service acknowledges the Publisher library
only after a reliable handoff, ensuring eventual delivery. (Dur-
ing periods of subscriber unavailability, the pub/sub service
buffers notifications in a persistent log.)

2. Thialfi’s Bridge component consumes the feed of published
notifications in each data center and processes them in small
batches. The Bridge delivers the update to the Matcher server
responsible for the object.

3. The Matcher updates its record for the object with the new
version number. Subsequently, using its copy of the registered
client list, the Matcher propagator determines which Registrar
servers have clients registered for the object. It sends RPCs to
each Registrar server with (client, oid, version) tuples indicat-
ing which clients need to be notified. The client identifiers are
used to index the Registrar’s C/O-Cache efficiently.

4. Each Registrar receiving a message stores the pending notifi-
cation for the appropriate clients and responds to the RPC.

5. When all Registrars have responded, the operation is removed
from the Matcher pending operation set.

6. Periodically, the Registrars resend unacknowledged notifica-
tions for online clients. Currently, we use a 60-second retrans-
mission interval.

4.1.5 Handling Server Failures
We now discuss how a server reconstructs its in-memory state after
a restart (an independent infrastructure system at Google monitors
and restarts services that have crashed or become unresponsive).
For simplicity, consider a brute-force approach: if any server fails,
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Registrar Table

Row Key Client State Object State Propagation State
created last-seqno presence reg-{oid} log-{oid} pending

hash(user):user:uuid appid@0 ""@seqno addr@seqno ""@seqno ""@version ""@seqno

Matcher Table

Row Key Object State Client State Propagation State
version reg-{client-id} pending

hash(object-id):object-id appid@version appid@seqno ""@version

Table 2: Bigtable layout for server-side state. a@b indicates a value a at timestamp b. seqno refers to the sequence number assigned
by the Registrar for that particular client.

all servers restart, and the data center identifier is changed to a new
value. Subsequent messages from clients with old tokens are de-
tected by the Registrars, triggering a token update as described in
§4.1.2. The Registration Sync Protocol then ensures that the clients
reissue their registrations.

Client registration messages are sufficient to reconstruct the regis-
tration state at the Registrar. The latest-version data at the Matcher
is not recovered (and pending notifications are lost) since there is
no mechanism to fetch version information from the application
backend. Nonetheless, correctness is not compromised. When
processing client registrations, the Registrar will send unknown-
version notifications for each registered object. This triggers client
requests to the application backend to learn the latest version. Such
an approach is conservative since the data may not have changed,
but Thialfi cannot easily confirm this. After restart, Thialfi resumes
normal processing of updates.

4.1.6 Handling Network Failures
There are three types of messages sent between the client and server:
client token requests, registration changes, and notifications / acks.
Any of these may be lost, reordered, or duplicated. Notifications
are acknowledged and hence reliably delivered, and reordering and
duplication are explicitly permitted by the semantics of Thialfi. All
other messages are retried by the client as needed. Clients detect
and ignore duplicate or reordered token grant messages from the
Registrar using a nonce, and the Registration Sync Protocol ensures
that client and server registration state eventually converge.

4.2 Persistent Storage
At the scale of millions of clients, recovering from failures by flush-
ing and reconstructing state is impractical. Some retention of state
is required to reduce work during recovery. In this section, we de-
scribe how Thialfi currently uses Bigtable [7] to address this issue.
The main idea guiding our use of persistent storage is that updates
to the C/O-Cache in the memory-only design translate directly into
blind writes into a Bigtable; i.e., updating state without reading
it. Because Bigtable is based on a log-structured storage system,
writes are efficient and fast.

4.2.1 Bigtable Layout
Storage locations in a Bigtable (Bigtable cells) are named by {row
key, column, version} tuples, and Bigtables may be sparse; i.e.,
there may be many cells with no value. We exploit this property
in our storage layout to avoid overwrites. For example, in the Reg-
istrar table, for a particular client/object registration pair, we use a
distinct row key (based on the client ID), column (based on the ob-
ject ID), and version (based on the registration sequence number).

When querying the registration status for that client/object pair, we
simply read the latest version.

Adapting our in-memory representation to Bigtable is straightfor-
ward. Registrar and Matcher state is stored in separate Bigtables.
The partitioning keys used in the in-memory system become the
row keys used in the Bigtables, distributing load uniformly. We
continue to statically partition the keyspace over the Registrar and
Matcher servers. Each server is thus assigned a contiguous range
of Bigtable rows.

The Bigtable schema is summarized in Table 2. Each row of the
Matcher table stores the latest known version for an object, the
application ID of the client that created that version, and the set
of clients registered for that object. Each Registrar row stores the
client’s application ID, the latest sequence number that was gener-
ated for the client by the Registrar, a channel-specific address if the
client is online, the object IDs that the client is registered for, and
the objects for which the client has an unacknowledged notifica-
tion. Each table also contains a column for tracking which rows
have pending information to propagate to the other table. Note
that a cell is written in the last-seqno column whenever a sequence
number is used for the client. This ensures that sequence numbers
always increase.

4.2.2 In-memory State
In order to improve performance, we cache a small amount of state
from Bigtable in Registrar and Matcher server memory. The Regis-
trars cache the registration digest of each online client (but not the
full set of registrations). The Matchers and Registrars also cache
their pending operation sets. We rely on Bigtable’s memory cache
for fast reads of the registrations and pending notifications. Since
our working set currently fits in Bigtable’s memory cache, this has
not created a performance problem. (We may revisit this decision
if emerging workloads change our Bigtable memory cache profile.)

The outcome of these properties is that the in-memory state of Thi-
alfi servers corresponds to in-progress operations and limited data
for online clients only.

4.2.3 Pushing Notifications to Clients
As with the in-memory design, reliable notification delivery to clients
is achieved by scanning for unacknowledged notifications. Instead
of memory, the scan is over the Registrar Bigtable. For efficiency
and performance, we also introduce a fast path: we unreliably send
notifications to online clients during Matcher propagation. While
channels are unreliable, message drops are rare, so this fast path
typically succeeds. We confirm this in our evaluation (§6).
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Realizing that a lengthy periodic scan adversely impacts the tail of
the notification latency distribution, we are currently implementing
a scheme that buffers undelivered notifications in Registrar memory
to more quickly respond to failures.

4.2.4 Client Garbage Collection
If a client remains offline for an extended period (e.g., several days),
Thialfi garbage-collects its Bigtable state. This involves deleting
the client’s row in the Registrar Bigtable and deleting any registra-
tion cells in the Matcher Bigtable. If the client later comes back on-
line, our use of blind writes means that the client’s row may be in-
advertently recreated. Although rare, some mechanism is required
to detect such an entry, remove it, and notify the client that it must
restart with a fresh client ID.

In order to detect client resurrection after garbage collection, Thi-
alfi maintains a created cell in the client’s Registrar row (Table 2).
The Registrar writes this cell when it assigns an ID for a client, and
the garbage collector deletes it; no other operations modify this cell.
If a garbage collected client comes back online as described above,
its created cell will be absent from the recreated row. An asyn-
chronous process periodically scans the Registrar Table for rows
without created cells. When encountered, the ‘zombie’ client row
is deleted. Also, if the client is online, it is informed that its ID
is invalid. Upon receiving this message, the client discards its ID
and reconnects as a new client. This message may be lost without
compromising correctness; it will be resent by the asynchronous
process if the client attempts further operations.

4.2.5 Recovery from Server Failures
We now describe how persistent storage reduces the burden of fail-
ure recovery. The server caches of Bigtable state and of pending
operations are write-through caches, so they may be restored after
a restart by simply scanning the Bigtable. Since each server is as-
signed a contiguous range, this scan is efficient. Additionally, scan-
ning to recover pending operations yields a straightforward strat-
egy for shedding load during periods of memory pressure: a server
aborts in-progress propagations, evicts items from its pending op-
eration set, and schedules a future scan to recover.

If required, all Bigtable state can be dropped, with recovery pro-
ceeding as in the in-memory design. In practice, this has simplified
service administration significantly; e.g., when performing a Big-
table schema change, we simply drop all data, avoiding the com-
plexity of migration.

4.2.6 Tolerating Storage Unavailability
A consequence of storing state in Bigtable is that Thialfi’s overall
availability is limited by that of Bigtable. While complete unavail-
ability is extremely rare, a practical reality of large-scale storage is
partial unavailability—the temporary failure of I/O operations for
some rows, but not all. In our experience, minor Bigtable unavail-
ability occurs several times per day. Our asynchronous approach to
data propagation accommodates storage unavailability. I/O failures
are skipped and retried, but do not prevent partial progress; e.g.,
clients corresponding to available regions will continue to receive
notifications.

This covers the majority of Thialfi I/O with two exceptions: 1) the
initial write when accepting a client operation, e.g., a registration,
and 2) the write accepting a new version of an object at the Matcher.
In the first case, the client simply retries the operation.

However, accepting new versions is more complex. One possibility
is to have the Bridge delay the acknowledgement of a notification
to the publish/subscribe service until the Matcher is able to perform
the write. This approach quickly results in a backlog being gener-
ated for all notifications destined for the unavailable Matcher rows.
Once a large backlog accumulates, the pub/sub service no longer
delivers new messages, delaying notifications for all clients in the
data center. Even in the absence of our particular pub/sub system,
requiring application backends to buffer updates due to partial Thi-
alfi storage unavailability would significantly increase their opera-
tional complexity.

Given the prevalence of such partial storage unavailability in prac-
tice, we have implemented a simple mechanism to prevent a back-
log from being generated. To acknowledge a notification, the Bridge
needs to record the latest version number somewhere in stable stor-
age. It need not be written to the correct location immediately, so
long as it is eventually propagated there. To provide robustness
during these periods, we reissue failed writes to a distinct, scratch
Bigtable. A scanner later retries the writes against the Matcher Big-
table. The Everest system [19] uses a similar technique to spread
load; in Thialfi, such buffering serves to reduce cascading failures.

Specifically, for a given object, we deterministically compute a se-
quence of retry locations in a scratch Bigtable. These are generated
by computing a salted hash over the object ID, using the retry count
as the salt. This computation exploits Thialfi’s relaxed semantics
to reduce the amount of scratch storage required; successive ver-
sion updates to the same object overwrite each other in the scratch
table when the first scratch write succeeds. Storing failed updates
in random locations—a simple alternative—would retain and prop-
agate all updates instead of only the latest. While correct, this is
inefficient, particularly for hot objects. Our scheme efficiently sup-
ports the common case: a series of Matcher writes fails, but the first
attempt of each corresponding scratch write succeeds.

4.3 Supporting Multiple Data Centers
To meet availability requirements at Google, Thialfi must be repli-
cated in multiple data centers. In this section, we describe the ex-
tensions required to support replication, completing the description
of Thialfi’s design. Our goal is to ensure that a site failure does
not degrade reliability; i.e., notifications may be delayed, but not
dropped. Clients migrate when a failure or load balancing event
causes protocol messages to be routed from the Thialfi data cen-
ter identified in the client’s session token to a Thialfi instance in
another data center.

We require that the application’s channel provide client affinity;
i.e., Thialfi messages from a given client should be routed to the
same data center over short time scales (minutes). Over longer time
scales, clients may migrate among data centers depending on appli-
cation policies and service availability. Also, when a Thialfi data
center fails, we require the application channel to re-route messages
from clients to other data centers. These characteristics are typical
for commonly used channels.

Even without replication of registration state, Thialfi can automat-
ically migrate clients among data centers. When a client connects
to a new data center, the Registrar instructs it to repeat the token-
assignment handshake, by which it obtains a new token (§4.1.2).
Since the new data center has no information about the client’s reg-
istrations, the client and server registration digests will not match,
triggering the Registration Sync Protocol. The client then reissues

136



all of its registrations. While correct, this is expensive; a data cen-
ter failure causes a flood of re-registrations. Thus, replication is
designed as an optimization to decrease such migration load.

4.3.1 State Replication
Thialfi uses two forms of state replication: 1) reliable replication
of notifications to all data centers and 2) best-effort replication of
registration state. The pub/sub service acknowledges the Publisher
library after a reliable handoff and ensures that each notification is
reliably delivered to all Thialfi data centers; the Thialfi Matchers in
each data center acknowledge the notification only after it has been
written to stable storage.

When replicating registration state, we use a custom, asynchronous
protocol that replicates only the state we must reconstruct during
migration. Specifically, we replicate three Registrar operations be-
tween Thialfi data centers: 1) client ID assignment, 2) registrations,
and 3) notification acknowledgements. Whenever a Registrar pro-
cesses one of these operations, it sends best-effort RPC messages to
the Registrars in other data centers. At each data center, replication
agents in the Registrar consume these messages and replay the op-
erations. (While we have implemented and evaluated this scheme,
we have not yet deployed it in production.)

We initially attempted to avoid designing our own replication scheme.
A previous design of Thialfi used a synchronous, globally consis-
tent storage layer called Megastore [2]. Megastore provides trans-
actional storage with consistency guarantees spanning data cen-
ters. Building on such a system is appealingly straightforward:
simply commit a transaction that updates relevant rows in all data
centers before acknowledging an operation. Unfortunately, micro-
benchmarks show that Megastore requires roughly 10 times more
operations per write to its underlying Bigtables than a customized
approach. For a write-intensive service like Thialfi, this overhead
is prohibitive.

Although the Thialfi replication protocol is designed to make mi-
gration efficient, an outage still causes a spike in load. During a
planned outage, we use an anti-storm technique to spread load.
During a migration storm, Thialfi silently drops messages from a
progressively-decreasing fraction of migrated clients at the surviv-
ing data centers, trading short-term unavailability for reduced load.

5. ACHIEVING RELIABLE DELIVERY
In this section, we describe Thialfi’s notion of reliability and ar-
gue that our mechanisms provide it. We define reliable delivery as
follows:

Reliable delivery property: If a well-behaved client reg-
isters for an object X, Thialfi ensures that the client will
always eventually learn of the latest version of X.

A well-behaved client is one that faithfully implements Thialfi’s
API and remains connected long enough to complete required op-
erations, e.g., registration synchronization. In our discussion, we
make further assumptions regarding integrity and liveness of de-
pendent systems. First, we assume that despite transitory unavail-
ability, Bigtable tablets will eventually be accessible and will not
corrupt stored data. Second, we assume that the communication
channel will not corrupt messages and will eventually deliver them
given sufficient retransmissions.

As is typical for many distributed systems, Thialfi’s reliability goal
is one-sided. By this we mean that, while clients will learn the
latest version of registered objects, notifications may be duplicated
or reordered, and intermediate versions may be suppressed.

Thialfi achieves end-to-end reliability by ensuring that state changes
in one component eventually propagate to all other relevant compo-
nents of the system. We enumerate these components and their in-
teractions below and discuss why state transfer between them even-
tually succeeds. We have not developed a formal model of Thialfi
nor complete proofs of its safely or liveness; these are left as future
work.

Registration state is determined by the client, from which it prop-
agates to the Registrar and Matcher (subject to access control poli-
cies). The following mechanisms ensure the eventual synchroniza-
tion of registration state across the three components:

• Client ↔ Registrar: Every message from the client includes
a digest that summarizes all client registration state (§4.1.3). If
the client-provided digest disagrees with the state at the Regis-
trar, the synchronization protocol runs, after which client and
server agree. Periodic heartbeat messages include the registra-
tion digest, ensuring that any disagreement will be detected.

• Registrar → Matcher: When the Registrar commits a regis-
tration state change to Bigtable, a pending work marker is also
set atomically. This marker is cleared only after all dependent
writes to the Matcher Bigtable have completed successfully. All
writes are retried by the Registrar Propagator if any failure oc-
curs. (Because all writes are idempotent, this repetition is safe.)

Notification state comes from the Publisher, which provides a re-
liable feed of object-version pairs via the pub/sub service. These
flow reliably through the Bridge, Matcher, and Registrar to the
client using the following mechanisms:

• Bridge→Matcher: Notifications are removed from the update
feed by the Bridge only after they have been successfully written
to either their appropriate location in the Matcher Bigtable or
buffered in the Matcher scratch Bigtable. A periodic task in the
Bridge reads the scratch table and resends the notifications to
the Matcher, removing entries from the scratch table only after a
successful Matcher write.

• Matcher → Registrar: When a notification is written to the
Matcher Bigtable, a pending work marker is used to ensure even-
tual propagation. This mechanism is similar to that used for Reg-
istrar→Matcher propagation of registration state.
Notification state also flows from the Matcher to the Registrar
in response to registration state changes. After a client registers
for an object, Registrar post-propagation will write a notifica-
tion at the latest version into the client’s Registrar row (§4.1.3).
This ensures that the client learns of the latest version even if the
notification originally arrived before the client’s registration.

• Registrar → Client: The Registrar retains a notification for a
client until either the client acknowledges it or a subsequent no-
tification supersedes it. The Registrar periodically retransmits
any outstanding notifications while the client is online, ensuring
eventual delivery.

Taken together, local state propagation among components pro-
vides end-to-end reliability. Specifically:
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• A client’s registration eventually propagates to the Matcher, en-
suring that the latest notification received for the registered ob-
ject after the propagation will be sent to the client.
• Registrar post-propagation ensures that a client learns the ver-

sion of the object known to Thialfi when its registration reached
the Matcher. If no version was present at the Matcher, the client
receives a notification at unknown version.

The preceding discussion refers to system operation within a sin-
gle data center. In the case of multiple data centers, our Publisher
Library considers notification publication complete only after the
notification has been accepted by the Matcher or buffered in the
persistent storage of Google’s infrastructure publish/subscribe ser-
vice in all data centers. Thus, each application’s notifications are
reliably replicated to all data centers. This is in contrast to Thialfi’s
registration state, which is replicated on a best-effort basis. How-
ever, so long as a client is not interacting with a given data center,
there is no harm in the registration state being out-of-sync there.
When the client migrates to a new data center, the Registration Sync
Protocol (§4.1.3) ensures that the new Registrar obtains the client’s
current registration state. The propagation and post-propagation
mechanisms described above also apply in the new data center, en-
suring that the new Registrar will reliably inform the client of the
latest version of each registered object. Taken together, these mech-
anisms provide reliable delivery when operating with multiple data
centers.

6. EVALUATION
Thialfi is a production service that has been in active use at Google
since the summer of 2010. We report performance from this de-
ployment. Additionally, we evaluate Thialfi’s scalability and fault
tolerance for synthetic workloads at the scale of millions of users
and thousands of updates per second. Specifically, we show:

• Ease of adoption: Applications can adopt Thialfi with minimal
design and/or code changes. We describe a representative case
study, the Chrome browser, for which a custom notification ser-
vice was replaced with Thialfi. (§6.1)
• Scalability: In production use, Thialfi has scaled to millions of

users. Load testing shows that resource consumption scales lin-
early with active users and notification rate while maintaining
stable notification latencies. (§6.2)
• Performance: Measurements of our production deployment show

that Thialfi delivers 88% of notifications in less than one second.
(§6.3)
• Fault-tolerance: Thialfi is robust to the failure of an entire data

center. In a synthetic fail-over experiment, we rapidly migrate
over 100,000 clients successfully and quantify the over-provisioning
required at remaining instances in order to absorb clients during
fail-over. We also provide measurements of transient unavail-
ability in production that demonstrate the practical necessity of
coping with numerous short-term faults. (§6.4)

6.1 Chrome Sync Deployment
Chrome supports synchronizing client bookmarks, settings, exten-
sions, and so on among all of a user’s installations. Initially, this
feature was implemented by piggy-backing on a previously-deployed
chat service. Each online client registered its presence with the chat
service and would broadcast a chat metadata message notifying on-
line replicas that a change had committed to the back-end storage

infrastructure. Offline clients synchronized data on startup. While
appealingly simple, this approach has three drawbacks:

• Costly startup synchronization: The combined load of synchro-
nizing clients on startup is significant at large scale. Ideally, syn-
chronization of offline clients would occur only after a change in
application data, but no general-purpose signaling mechanism
was available.

• Unreliable chat delivery: Although generally reliable, chat mes-
sage delivery is best-effort. Even when a client is online, de-
livery is not guaranteed, and delivery failures may be silent. In
some cases, this resulted in a delay in synchronization until the
next browser restart.

• Lack of fate-sharing between updates and notifications: Since
clients issue both updates and change notifications, the update
may succeed while the notification fails, leading to stale replicas.
Ensuring eventual broadcast of the notification with timeout and
retry at the client is challenging; e.g., a user may simply quit the
program before it completes.

While these issues might have been addressed with specific fixes,
the complexity of maintaining a reliable push-based architecture
is substantial. Instead, Chrome adopted a hybrid approach: best-
effort push with periodic polling for reliability. Unfortunately, the
back-end load arising from frequent polling was substantial. To
control resource consumption, clients polled only once every few
hours. This again gave rise to lengthy, puzzling delays for a small
minority of users and increased complexity from maintaining sep-
arate code paths for polling and push updates.

These issues drove Chrome’s adoption of Thialfi, which addresses
the obstacles above. Thialfi clients are persistent; offline clients re-
ceive notifications on startup only if a registered object has changed
or the client has been garbage collected. This eliminates the need
for synchronization during every startup. Thialfi provides end-to-
end reliability over the best-effort communication channel used by
Chrome, thereby easing the porting process. Finally, Thialfi servers
receive notifications directly from Chrome’s storage service rather
than from clients, ensuring that notification delivery is fate-shared
with updates to persistent storage.

Migrating from custom notifications to Thialfi required modest code
additions and replaced both the previous push and polling notifica-
tion support. Chrome includes Thialfi’s C++ client library, imple-
ments our API (Figure 2), and routes Thialfi notifications to appro-
priate Chrome components. In full, Chrome’s Thialfi-specific code
is 1,753 lines of commented C++ code (535 semicolons).

6.2 Scalability
We evaluate Thialfi’s scalability in terms of resource consumption
and performance. We show that resource consumption increases
proportionally with increases in load. With respect to performance,
we show that notification latencies are stable as load increases, pro-
vided sufficient resources. These measurements confirm our prac-
tical experience. To support increasing usage of Thialfi, we need
only allocate an incremental amount of additional infrastructure
resources. The two main contributors to Thialfi’s load are 1) the
number of active users and 2) the rate at which notifications are
published. We consider each in turn, measuring synthetic work-
loads on shared Google clusters. While our experiments are not
performance-isolated, the results presented are consistent over mul-
tiple trials.
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Figure 6: Resource consumption and notification latency as
active users increase.
Increasing active users: Increasing the number of active users ex-
ercises registration, heartbeat processing, and client / session as-
signment. To measure this, we recorded the resource consumption
of Thialfi in a single data center while adding 2.3 million synthetic
users. Each user had one client (the number of clients per user does
not impact performance in Thialfi). Clients arrived at a constant
rate of 570 per second. Each registered for five distinct objects
and issued a random notification every 8 minutes and a heartbeat
message every 20 minutes. The version of each notification was
set to the current time, allowing registered clients to measure the
end-to-end latency upon receipt.

Figure 6 shows the results. As a proxy for overall resource con-
sumption, we show the increasing CPU consumption as users ar-
rive. Demand for other resources (network traffic, RPCs, memory)
grows similarly. The CPU data is normalized by the amount re-
quired to support a baseline of 100,000 users. Overall, increasing
active users 23-fold (from 100,000 to 2.3 million) requires∼3× the
resources. Throughout this increase, median notification delays are
stable, ranging between 0.6–0.7 seconds. (Because these synthetic
clients are local to the data center, delays do not include wide-area
messaging latency.)

Increasing notification rate: Increasing the notification rate stresses
Matcher to Registrar propagation. In this case, we measure re-
source consumption while varying the notification rate for a fixed
set of 1.4 million synthetic clients that have completed registrations
and session assignment; all clients were online simultaneously for
the duration of the experiment. As in the previous measurements,
each client registered for five objects and each user had one client.

Figure 7 shows the results of scaling the notification rate. We report
CPU consumption normalized by the amount required to support
a baseline notification rate of 1,000 per second and increase the
rate by 1,000 up to 13,000. As before, median notification delays
remain stable with proportional resource consumption.

6.3 Performance
The previous measurements quantify median performance for syn-
thetic workloads. We next examine the distribution of notifica-
tion latencies observed in our production deployment. Each Thialfi
component tracks internal propagation delays by appending a log
of timestamps to each notification as it flows through the system.

Figure 8 shows a CDF of 2,514 notifications sampled over a 50-
minute period from an active Thialfi cell. 88% of notifications are
dispatched in less than one second. However, as is typical in asyn-

Figure 7: Resource consumption and notification latency as
the notification rate increases.

Figure 8: Cumulative distribution of notification latencies ran-
domly sampled from our live deployment.

chronous distributed systems operating on shared infrastructure, a
minority of messages may be delayed for much longer, exceeding
two seconds in our measurements.

We point out that these delays do not include delivery and acknowl-
edgements from clients themselves; we measure only the delay
within Thialfi from the receipt of a notification to the first attempt to
send it to an online client. End-to-end delays vary significantly due
to the variable quality of channels and the lengthy delays incurred
by offline clients. In practice, network propagation adds between
30–100 ms to overall notification latency.

In practice, the majority of Thialfi’s delay is self-imposed. Our cur-
rent implementation aggressively batches Bigtable operations and
RPC dispatch to increase efficiency. This is illustrated in Figure 9,
which shows the delay for each stage of notification delivery av-
eraged over a 10-minute interval. This data is drawn from our
production deployment. The Publisher library appends an initial
timestamp when the notification is generated by the application,
and its propagation delay to Thialfi’s bridge is fundamental. Once
received, the RPC sending a notification from the bridge to the
Matcher is batched with a maximum delay of 500 ms. Matcher Big-
table writes are similarly batched. During propagation, the Matcher
reads the active client list—this data is typically retrieved directly
from Bigtable’s in-memory cache. Finally, the propagation RPC to
the Registrar has a batch delay of 200 ms.

The majority of our current applications use Thialfi as a replace-
ment for lengthy polling, and the sub-second delays associated with
batching are acceptable. But, as Figure 9 shows, we can further
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Figure 9: The average contribution to overall notification delay
of each Thialfi system component.

reduce Thialfi’s delay by simply reducing the batching delay of rel-
evant components. This increases resource demands but does not
introduce any fundamental scalability bottlenecks.

6.4 Fault Tolerance
We evaluate fault tolerance in two ways. First, we examine fail-
over of clients between data centers. This exercises our synchro-
nization protocol and quantifies the over-provisioning required to
cope with data center failure in practice. Second, we present a
month-long trace of how often Thialfi buffers incoming notifica-
tions to cope with small periods of partial Matcher unavailability.
This shows the practical necessity for our techniques.

Data center fail-over: The failure of a data center requires that
clients be migrated to a new instance and their state synchronized
with new servers. Migration can be expensive at the server; it re-
quires reading the set of registered objects, computing the digest,
sending pending notifications, and processing registration requests
(if any). Applications with few updates and/or lengthy heartbeat
intervals naturally spread migration load over a lengthy interval.
Here, we consider a more challenging case: rapidly migrating tens
of thousands of clients with very frequent heartbeats to ensure rapid
fail-over.

We instantiated 380,000 clients spread uniformly across three dis-
tinct Thialfi data centers with a heartbeat interval of 30 seconds.
Each client registered for five objects and generated random notifi-
cations yielding an incoming notification rate of roughly 11,000/sec
across all clients. After allowing the system to stabilize, we halted
the Thialfi instance of one data center while measuring the CPU
consumption of the remaining two as well as the overall client no-
tification rate. The failed data center was not restored for the du-
ration of the experiment. Note that this experiment was performed
using a prior version of the Registration Sync Protocol; rather than
including the registration digest in each message, clients request
the full registration list during migration. This modification has not
significantly changed resource consumption in practice.

Figure 10 shows the results. We normalize CPU usage by the first
observation taken in steady state. After several minutes, we fail
one data center, which clients detect after three failed heartbeats.
This is reflected by increased CPU consumption at the remaining
instances and a sudden drop in notification receive rate correspond-
ing to clients in the failed data center. As clients migrate, accumu-
lated notifications are discharged as clients are brought up-to-date.
Shortly after, the system stabilizes. To migrate 33% of clients over

Figure 10: CPU usage and notification rate during the sudden
failure of a Thialfi data center.

Figure 11: A month-long trace of notification buffering during
Matcher unavailability or Matcher storage unavailability.

several minutes, Thialfi requires over-provisioning by a factor of
∼1.6.

Matcher unavailability: Thialfi’s provisions for fault tolerance
arise from practical experience. For example, our implementation
buffers notifications to a temporary Bigtable to cope with transient
unavailability (§4.2.6). This mechanism was added after our initial
deployment in response to frequent manual intervention to respond
to failures. Figure 11 shows a month-long trace of notification
buffering, confirming the need for error handling in practice. After
deploying this solution, the number of alerts that occurred due to
a backlog disappeared completely. We point out that buffering oc-
curs not only during storage unavailability but any unavailability of
the Matcher, e.g., during software upgrades or restarts. Support for
automatically buffering notifications without manual action during
these periods has greatly simplified service administration.

7. RELATED WORK
The problem of scalable event notification has received significant
attention in the distributed systems community, which we draw on
in our design. Thialfi differs from existing work in two principal
ways. The first is the constraints of our environment. Thialfi’s de-
sign stems from the unique requirements of Internet applications,
infrastructure services, and the failures they exhibit. The second
difference is our goal. Our API and semantics provide develop-
ers with reliability that simplifies development, but Thialfi does not
impose significant restrictions on an application’s runtime environ-
ment or software stack.
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Thialfi builds on existing infrastructure services widely used at Goo-
gle. We use Bigtable [7] to store object and client data. The Chubby
lock service [4] provides reliable, consistent naming and configu-
ration of our server processes. While specific to Google, the func-
tionality of these systems is being increasingly replicated by open
source alternatives for which Thialfi’s design could be adapted. For
example, HBase [12] provides Bigtable-like structured storage atop
the HDFS block store [13], and Zookeeper [15] provides a highly
reliable group coordination service.

Thialfi’s provisions for fault-tolerance draw on emerging practical
experience with infrastructure services [3, 9, 11, 21]. Our experi-
ence with performance variability and communications failures is
consistent with these observations. But, unlike many existing in-
frastructure services, Thialfi is explicitly designed to cope with the
failure of entire data centers. Megastore [2] shares this goal, us-
ing synchronous replication with Paxos [16] to provide consistent
structured data storage. While early designs of Thialfi were built
atop Megastore to inherit its robustness to data center failure, we
eventually adopted replication and fault-tolerance techniques spe-
cific to a notification service; these increase efficiency substantially.

Our goal of providing a scalable notification service is shared by
a number of P2P notification and publish / subscribe systems, e.g.,
Bayeux [29], Scribe [23], and Siena [6]. These systems construct
multicast trees on overlay routing substrates in order to efficiently
disseminate messages. While Thialfi addresses a similar problem,
differences between P2P and infrastructure environments necessi-
tate radical differences in our design. For example, P2P message
delivery requires direct browser-to-browser communication that is
precluded by fundamental security policies [24]. Also, message
delivery is best-effort, departing from our goal of maintaining reli-
able delivery of notifications. Significant additional work exists on
publish / subscribe systems (e.g. [1, 20, 25, 26]), but these systems
provide richer semantics and target lower scale.

For web applications, Thialfi addresses a longstanding limitation of
HTTP—the need for polling to refresh data. Others have observed
these problems; e.g., Cao and Liu [5] advocate the use of invalida-
tions as an alternative to polling to maintain the freshness of web
documents, but their proposed protocol extensions were not taken
up. Yin et al. [28] study the efficiency of HTTP polling and pro-
pose an invalidation protocol that is conceptually similar to Thialfi,
although it operates on a single HTTP server only. We reexamine
these problems at much larger scale. Cowling et al. [8] mention the
applicability of Census, a Byzantine-fault-tolerant group member-
ship system, to the problem of large-scale cache invalidation, but
they leave the design to future work.

More recently, practitioners have developed a number of techniques
to work around the request / reply limitations of HTTP [17]. Many
approaches rely on a common technique: each client maintains
an in-flight request to the server, which replies to this outstand-
ing request only when new data is available. More recently, web
sockets [14] have been proposed as a standard enabling full-duplex
HTTP messaging. Thialfi supports these channels transparently,
separating the implementation details of achieving push messages
from the semantics of the notification service.

8. LESSONS LEARNED
In the process of designing, implementing, and supporting Thialfi
we learned several lessons about our design.

For many applications, the signal is enough. Our choice to pro-
vide applications with only a notification signal was contentious.
In particular, developers have almost universally asked for richer
features than Thialfi provides: e.g., support for data delivery, mes-
sage ordering, and duplicate suppression. Absent these more com-
pelling features, some developers are hesitant to adopt Thialfi. We
have avoided these features, however, as they would significantly
complicate both our implementation and API. Moreover, we have
encountered few applications with a fundamental need for them.
For example, applications that would prefer to receive data directly
from Thialfi typically store the data in their servers and retrieve
it after receiving a notification. While developers often express
consternation over the additional latency induced by the retrieval,
for many applications this does not adversely affect the user expe-
rience. In our view, reliable signaling strikes a balance between
complexity and system utility.

Client library rather than client protocol. Perhaps more than any
other component in the system, Thialfi’s client library has under-
gone significant evolution since our initial design. Initially, we had
no client library whatsoever, opting instead to expose our proto-
col directly. Engineers, however, strongly prefer to develop against
native-language APIs. And, a high-level API has allowed us to
evolve our client-server protocol without modifying application code.

Initially, the client library provided only a thin shim around RPCs,
e.g., register, unregister, acknowledge. This API proved essentially
unusable. While seemingly simple, this initial design exposed too
many failure cases to application programmers, e.g., server crashes
and data center migration. This experience lead us to our goal of
unifying error handling with normal operations in Thialfi’s API.

Complexity at the server, not the client. The presence of a client
library creates a temptation to improve server scalability by of-
floading functionality. Our second client library took exactly this
approach. For example, it detected data center switchover and
drove the recovery protocol, substantially simplifying the server
implementation. In many systems, this design would be preferable:
server scalability is typically the bottleneck, and client resources
are plentiful. But, a sophisticated client library is difficult to main-
tain. Thialfi’s client library is implemented in multiple languages,
and clients may not upgrade their software for years, if ever. In
contrast, bug and performance fixes to data center code can be de-
ployed in hours. Given these realities, we trade server resources for
client simplicity in our current (third) client library.

Asynchronous events, not callbacks. Developers are accustomed
to taking actions that produce results, and our initial client libraries
tried to satisfy this expectation. For example, the register call took a
registration callback for success or failure. Experience showed call-
backs are not sufficient; e.g., a client may become spontaneously
unregistered during migration. Given the need to respond to asyn-
chronous events, callbacks are unnecessary and often misleading.
Clients only need to know current state, not the sequence of opera-
tions leading to it.

Initial workloads have few objects per client. A key feature of
Thialfi is its support for tens of thousands of objects per client.
At present, however, no client application has more than tens of
objects per client. We suspect this is because existing client appli-
cations were initially designed around polling solutions that work
best with few objects per client. Emerging applications make use of
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fine-grained objects, and we anticipate workloads with high fanout
and many objects per client.

9. SUMMARY
We have presented Thialfi, an infrastructure service that provides
web, desktop, and mobile client applications with timely (sub-second)
notifications of updates to shared state. To make Thialfi generally
applicable, we provide a simple object model and client API that
permit developers flexibility in communication, storage, and run-
time environments. Internally, Thialfi uses a combination of server-
side soft state, asynchronous replication, and client-driven recovery
to tolerate a wide range of failures common to infrastructure ser-
vices, including the failure of entire data centers. The Thialfi API
is structured so that these failures are handled by the same applica-
tion code paths used for normal operation. Thialfi is in production
use by millions of people daily, and our measurements confirm its
scalability, performance, and robustness.
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