
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, MANUSCRIPT ID 1

Vive La Différence:
Paxos vs. Viewstamped Replication vs. Zab

Robbert van Renesse, Nicolas Schiper, Fred B. Schneider, Fellow, IEEE

Abstract—Paxos, Viewstamped Replication, and Zab are replication protocols for high-availability in asynchronous environments with
crash failures. Claims have been made about their similarities and differences. But how does one determine whether two protocols are
the same, and if not, how significant are the differences?
We address these questions using refinement mappings. Protocols are expressed as succinct specifications that are progressively
refined to executable implementations. Doing so enables a principled understanding of the correctness of design decisions for
implementing the protocols. Additionally, differences that have a significant impact on performance are surfaced by this exercise.

Index Terms—C.0.f Systems specification methodology, C.2.4 Distributed Systems, D.4.5 Reliability

F

1 INTRODUCTION
A protocol expressed in terms of a state transition spec-
ification Σ refines another specification Σ′ if there exists
a mapping of the state space of Σ to the state space
of Σ′ and each state transition in Σ can be mapped
to a state transition in Σ′ or to a no-op. This mapping
between specifications is called refinement [1] or backward
simulation [2]. If two protocols refine one another then we
might argue that they are alike. But if they don’t, how
does one characterize the similarities and differences
between two protocols?

We became interested in this question while compar-
ing three replication protocols for high availability in
asynchronous environments with crash failures.
• Paxos [3] is a state machine replication protocol [4], [5].

We consider a version of Paxos that uses the multi-
decree Synod consensus algorithm described in [3],
sometimes called Multi-Paxos. Implementations ap-
pear in Google’s Chubby service [6], [7], Microsoft’s
Autopilot service [8] (used by Bing), and the Ceph
distributed file system [9] (with interfaces now part of
the standard Linux kernel).
• Viewstamped Replication (VSR) [10], [11] is a replication

protocol originally targeted at replicating participants
in a Two-Phase Commit (2PC) [12] protocol. VSR was
used in the implementation of the Harp File Sys-
tem [13].
• Zab [14] (ZooKeeper Atomic Broadcast) is a replication

protocol used for the ZooKeeper [15] configuration ser-
vice. ZooKeeper was designed at Yahoo! and is now a
popular open source product distributed by Apache.

These protocols seem to rely on many of the same
principles. Citations [16], [17] assert that Paxos and
Viewstamped Replication are “the same algorithm in-
dependently invented,” “equivalent,” or that “the view

• R. van Renesse, N. Schiper, and F. B. Schneider are with the Department
of Computer Science, Cornell University, Ithaca, NY, 14853.

management protocols seem to be equivalent” [3]. The
Zab paper [14] says that “Zab follows the abstract de-
scription of Paxos by Lampson [18].”

In this paper, we explore similarities and differences
between these protocols using refinements. Refinement
mappings induce an ordering relation on specifications;
Fig. 1 shows a Hasse diagram of a set of eight specifi-
cations of interest, ordered by refinement. In Fig. 1, we
write Σ′ → Σ if Σ refines Σ′—that is, if there exists a
refinement mapping of Σ to Σ′.

We also give informal levels of abstraction in Fig. 1,
ranging from a highly abstract specification of a lineariz-
able service [19] to concrete, executable specifications.
Active and passive replication are common approaches
for replicating a service and ensuring that behaviors
are still linearizable. Multi-Consensus protocols use a
form of rounds in order to refine active and passive
replication. Finally, we obtain protocols such as Paxos,
VSR, and Zab.

Each refinement corresponds to a design decision, and
as can be seen in Fig. 1, the same specification is derived
by following different paths of such design decisions.
There is a qualitative difference between refinements
that cross abstraction boundaries in Fig. 1 and those
that do not. When crossing an abstraction boundary, a
refinement takes an abstract concept and replaces it with
a more concrete one. For example, it may take an abstract
decision and replace it by a majority of votes. Within the
same abstraction, a refinement restricts behaviors. For
example, one specification might decide commands out
of order whereas a more restricted specification might
decide them in order.

Using refinements, we identify and analyze common-
alities and differences between the replication protocols.
The refinements also suggest new variants of these pro-
tocols, characterizing conditions required for a lineariz-
able service. Other publications have used refinements to
specify replication protocols [18], [20], [21]. We employ



2 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, MANUSCRIPT ID

Linearizable*Service*

Ac/ve*Replica/on*

Passive*Replica/on*
Mul/7Consensus*

Mul/7Consensus7PO*

Paxos*

VSR* Zab*

Replica/on*

Consensus*

Service*

Abstract*

Concrete*
Implementa/on*

N
on

7e
xe
cu
ta
bl
e*

Ex
ec
ut
ab
le
*

Fig. 1: An ordering of refinement mappings and informal
levels of abstraction.

refinement for comparing Paxos, Viewstamped Replica-
tion, and Zab.

This paper is organized as follows. Section 2 in-
troduces state transition specifications for linearizable
replication as well as for active and passive replication.
Section 3 presents Multi-Consensus, a canonical proto-
col that generalizes Paxos, VSR, and Zab: it forms a
basis for comparison. Progress summaries, a new class
of invariants, enable constructive reasoning about why
and how these protocols work. We show how passive
replication protocols refine Multi-Consensus by adding
prefix order (aka primary order), creating Multi-Consensus-
PO. Section 4 presents implementation details of Paxos,
VSR, and Zab that constitute the final refinement steps to
executable protocols. Section 5 discusses the implications
of identified differences on performance. Section 6 gives
a short overview of the history of concepts used in
these replication protocols, and Section 7 is a conclusion.
A proof that active replication refines the linearizable
service is presented in Section 2.2, the details of the other
refinements are available online at the Computer Society
Digital Library [22].

2 MASKING FAILURES

To improve the availability of a service, a common
technique is replication. A consistency criterion defines
expected responses to clients for concurrent opera-
tions. Ideally, the replication protocol ensures lineariz-
ability [19]—execution of concurrent client operations is
equivalent to a sequential execution, where each opera-
tion is atomically performed at some point between its
invocation and response.

2.1 Specification
We characterize linearizability by giving a state transi-
tion specification (see Specification 1). A specification
defines states and gives legal transitions between states.
A state is defined by a collection of variables and
their current values. Transitions can involve parameters
(listed in parentheses) that are bound within the defined
scope. A transition definition gives a precondition and

Specification 1 Linearizable Service
var inputsν , outputsν , appState, invokedclt , respondedclt

initially: appState = ⊥ ∧ inputsν = outputsν = ∅ ∧
∀clt : invokedclt = respondedclt = ∅

interface transition invoke(clt , op):
precondition:

op 6∈ invokedclt

action:
invokedclt := invokedclt ∪ {op}
inputsν := inputsν ∪ {(clt , op)}

internal transition execute(clt , op, result ,newState):
precondition:

(clt , op) ∈ inputsν ∧
(result ,newState) = nextState(appState, (clt , op))

action:
appState := newState
outputsν := outputsν ∪ {((clt , op), result)}

interface transition response(clt , op, result):
precondition:

((clt , op), result) ∈ outputsν ∧ op 6∈ respondedclt

action:
respondedclt := respondedclt ∪ {op}

an action. If the precondition holds in a given state,
then the transition is enabled in that state. The action
relates the state after the transition to the state be-
fore. A transition is performed indivisibly, starting in
a state satisfying the precondition. No two transitions
are performed concurrently, and if multiple transitions
are enabled simultaneously, then the choice of which
transition to perform is unspecified.

There are interface variables and internal variables. In-
terface variables are subscripted with the location of
the variable, which is either a process name or the
network, ν. Internal variables have no subscripts and
their value is a function on the state of the underlying
implementation. Specification Linearizable Service has
the following variables:
• inputsν : a set that contains (clt , op) messages sent by

process clt . Here op is an operation invoked by clt .
• outputsν : a set of (clt , op, result) messages sent by the

service, containing the results of client operations that
have been executed.
• appState : an internal variable containing the state of

the application.
• invokedclt : the set of operations invoked by process clt .

This variable is maintained by clt itself.
• respondedclt : the set of completed operations, also main-

tained by clt .
There are interface transitions and internal transitions.
Interface transitions model interactions with the envi-
ronment, which consists of a collection of processes
connected by a network. An interface transition is per-
formed by the process that is identified by the first
parameter to the transition. Interface transitions may
not access internal variables. Internal transitions are per-
formed by the service, and we demonstrate how this is
done by implementing those transitions. The transitions
of Specification Linearizable Service are:



RENESSE et al.: VIVE LA DIFFÉRENCE: PAXOS VS. VIEWSTAMPED REPLICATION VS. ZAB 3

Client'1'

Client'2'

Backup'1'

Backup'2'

Primary'

op1'

op2'

execute(op1)'

apply(newState)'

response'

execute(op2)'

….'

1'

2' 3' 4'

Client'1'

Client'2'

Replica'2'

Replica'3'

Replica'1'

op1'

op2' execute(op1)'

response'

execute(op2)'

….'

1'

2'

3'

Order'
Ops.'

Order'
Updates'

(a) Active replication

Client'1'

Client'2'

Backup'1'

Backup'2'

Primary'

op1'

op2'

execute(op1)'

apply(newState)'

response'

execute(op2)'

….'

1'

2' 3' 4'

Client'1'

Client'2'

Replica'2'

Replica'3'

Replica'1'

op1'

op2' execute(op1)'

response'

execute(op2)'

….'

1'

2'

3'

Order'
Cmds.'

Order'
Updates'

(b) Passive replication

Fig. 2: A failure-free execution of active and passive replication.

• Interface transition invoke(clt , op) is performed when
clt invokes operation op. Each operation is uniquely
identified and can be invoked at most once by a
client (enforced by the precondition). Adding (clt , op)
to inputsν models clt sending a message containing op
to the service. The client records what operations it has
invoked in invokedclt .
• Transition execute(clt , op, result ,newState) is an inter-

nal transition that is performed when the replicated
service executes op for client clt . The application-
dependent deterministic function nextState relates an
application state and an operation from a client
to a new application state and a result. Adding
((clt , op), result) to outputsν models the service sending
a response to clt .
• Interface transition response(clt , op, result) is per-

formed when clt receives the response. The client
keeps track of which operations have completed in
respondedclt to prevent this transition from being per-
formed more than once per operation.

Specification Linearizable Service implies that a client
cannot receive a response to an operation before in-
vocation. However, the specification does allow each
client operation to be executed an unbounded number of
times. In an implementation, multiple executions could
occur if the response to the client operation got lost
by the network and the client retransmits its operation
to the service. In practice, replicated services reduce
or eliminate the probability that a client operation is
executed more than once by keeping state about which
operations have been executed. For example, a service
could eliminate duplicate operations by attaching per-
client sequence numbers to operations. In all of the
specifications that follow, we omit logic for preventing
operation duplication to simplify the presentation.

We make the following assumptions about interface
transitions:

• Crash Failures: A process follows its specification until
it fails by crashing. Thereafter, it executes no transi-
tions. Processes that never crash are called correct. A
process that halts execution and later recovers and
resumes execution is considered correct albeit, tem-
porarily slow. A recovering process starts its execution
exactly where it left it before halting, by relying on
stable storage.

• Failure Threshold: Bound f defines the maximum
number of replica processes that may fail; the number
of client processes that may fail is unbounded.
• Fairness: Except for interface transitions at a crashed

process, a transition that becomes continuously en-
abled is eventually executed.
•Asynchrony: There is no bound on the delay before a

continuously enabled transition is executed.
We use refinement to show only that design decisions

are safe under the assumption of Crash Failures. In-
termediate specifications we derive do not necessarily
guarantee liveness properties.1 To show that the final
refinements support liveness properties such as “an op-
eration issued by a correct client is eventually executed”,
we require the existence of the Ω failure detector (see
Section 4.2).

2.2 Active and Passive Replication

Specification 1 has internal variables and transitions that
have to be implemented. There are two well-known
approaches to replication:
•With active replication, also known as state machine repli-

cation [4], [5], each replica implements a deterministic
state machine. All replicas process the same operations
in the same order.
•With passive replication, also known as primary

backup [23], a primary replica runs a deterministic state
machine, while backups only store copies of the pri-
mary replica’s state. The primary computes a sequence
of new application states by processing operations
and forwards these states to each backup, in order of
generation.

Fig. 2a illustrates a failure-free execution of a service
implemented using active replication.
1) Clients submit operations to the service (op1 and op2

in Fig. 2a).
2) Replicas, starting out in the same state, execute re-

ceived client operations in the same order.
3) Replicas send responses to the clients. Clients ignore

all but the first response they receive.
The tricky part of active replication is ensuring that
replicas execute operations in the same order, despite

1. State transition specifications may include supplementary liveness
conditions. If so, a specification Σ that refines a specification Σ′

preserves both the safety and liveness properties of Σ′.



4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, MANUSCRIPT ID

replica failures, message loss, and unpredictable delivery
and processing delays. A fault-tolerant consensus proto-
col [24] is typically employed so that replicas will agree
on the ith operation for each i. Specifically, each replica
proposes an operation that was received from one of the
clients in instance i of the consensus protocol. Only one
of the proposed operations can be decided. The service
remains available provided each instance of consensus
eventually terminates.

Fig. 2b depicts a failure-free execution of passive repli-
cation:
1) Clients submit operations only to the primary.
2) The primary orders operations and computes new

states and responses.
3) The primary forwards new states (so-called state up-

dates) to each backup in the order generated.
4) The primary sends the response from an operation

only after the corresponding state update has been
successfully decided (this is made precise in Section 3).

Because two primaries may compete to have their state
updates applied at the backups, replicas apply a state
update u on the same state used by the primary to
compute u. This is sometimes called the prefix order or
primary order property [14].

For example, consider a replicated integer variable
with initial value 3. One client wants to increment the
variable, while the other wants to double it. One primary
receives both operations and submits state updates 4
followed by 8. Another primary receives the operations
in the opposite order and submits updates 6 followed
by 7. Without prefix ordering, it may happen that the
decided states are 4 followed by 7, not corresponding to
any sequential history of the two operations.

VSR and Zab employ passive replication; Paxos em-
ploys active replication. However, it is possible to im-
plement one approach on the other. The Harp file sys-
tem [13], for example, uses VSR to implement a repli-
cated message-queue containing client operations—the
Harp primary proposes state updates that backups apply
to the state of the message-queue. Replicas, running
deterministic NFS state machines, then execute NFS
operations in queue order. In other words, Harp uses an
active replication protocol built using a message-queue
that is passively replicated using VSR. In doing so, the
existing NFS servers do not have to be modified.

2.3 Refinement
Below, we present a refinement of a linearizable service
(Specification 1) using active replication. We then further
refine active replication to obtain passive replication. The
refinement of a linearizable service to passive replication
follows transitively.

2.3.1 Active Replication
We omit interface transitions invoke(clt , op) and
response(clt , op, result), which are the same as in Spec-
ification 1. Hereafter, a command cmd denotes a pair
(clt , op).

Specification 2 uses a sequence of slots. A replica ex-
ecutes transition propose(replica, slot , cmd) to propose
a command cmd for slot slot . We call the command a
proposal. Transition decide(slot , cmd) guarantees that
at most one proposal is decided for slot . Transition
learn(replica, slot) models a replica learning a decision
and assigning that decision to learnedreplica[slot ]. Repli-
cas update their state by executing a learned opera-
tion in increasing order of slot number with transition
update(replica, cmd , res,newState). The slot of the next
operation to execute is denoted by versionreplica .

Note that propose(replica, slot , cmd) requires that
replica has not yet learned a decision for slot . While not
necessary for safety, proposing a command for a slot that
is known to be decided is wasted effort. It would make
sense to require that replicas propose for the smallest
value of slot where both proposalsreplica [slot ] = ∅ and
learnedreplica[slot ] = ⊥. We do not require this only to
simplify the refinement mapping between active and
passive replication.

To show that active replication refines Specification 1,
we first show how the internal state of Specification 1
is derived from the state of Specification 2. The internal
state in Specification 1 is appState . For our refinement
mapping, its value is the copy of the application state
that is being maintained by the replica (or one of the
replicas) with the highest version number.

To complete the refinement mapping, we also must
show how transitions of active replication map onto
enabled transitions of Specification 1, or onto stutter steps
(no-ops with respect to Specification 1). The propose,
decide, and learn transitions are always stutter steps,
because they do not update appStatereplica of any replica.
An update(replica, cmd , res,newState) transition corre-
sponds to execute(clt , op, res,newState) in Specifica-
tion 1, where cmd = (clt , op) and replica is the first
replica to apply op. Transition update is a stutter step if
the executing replica is not the first to apply the update.

2.3.2 Passive Replication
Passive replication (Specification 3) also uses slots, and
proposals are tuples (oldState, (cmd , res,newState)) con-
sisting of the state prior to executing a command, a
command, the output of executing the command, and
a new state that results from applying the command. In
an actual implementation, the old state and new state
would each be represented by an identifier along with a
state update, rather than by the entire value of the state.

Any replica can act as primary. Primaries act specu-
latively, computing a sequence of states before they are
decided. Because of this, primaries maintain a separate
copy of the application state to which they apply the
speculative updates. We call this copy the shadow state.
Primaries may propose different state updates for the
same slot.

Transition propose(replica, slot , cmd , res,newState) is
performed when a primary replica proposes applying
cmd to shadowStatereplica for slot , resulting in output res.



RENESSE et al.: VIVE LA DIFFÉRENCE: PAXOS VS. VIEWSTAMPED REPLICATION VS. ZAB 5

Specification 2 Specification Active Replication

var proposalsreplica [1...], decisions[1...], learnedreplica[1...]
appStatereplica , versionreplica , inputsν , outputsν

initially:
∀s ∈ N+ : decisions[s] = ⊥ ∧
∀replica :

appStatereplica = ⊥ ∧ versionreplica = 1 ∧
∀s ∈ N+ :

proposalsreplica [s] = ∅ ∧ learnedreplica[s] = ⊥

interface transition propose(replica, slot , cmd):
precondition:

cmd ∈ inputsν ∧ learnedreplica[slot ] = ⊥
action:

proposalsreplica [slot ] := proposalsreplica [slot ] ∪ {cmd}

internal transition decide(slot , cmd):
precondition:

decisions[slot ] = ⊥ ∧ ∃r : cmd ∈ proposalsr[slot ]
action:

decisions[slot ] := cmd

internal transition learn(replica, slot):
precondition:

learnedreplica[slot ] = ⊥ ∧ decisions[slot ] 6= ⊥
action:

learnedreplica[slot ] := decisions[slot ]

interface transition update(replica, cmd , res,newState):
precondition:

cmd = learnedreplica[versionreplica ] ∧ cmd 6= ⊥ ∧
(res,newState) = nextState(appStatereplica , cmd)

action:
outputsν := outputsν ∪ {(cmd , res)}
appStatereplica := newState
versionreplica := versionreplica + 1

State shadowStatereplica is what the primary calculated
for the previous slot (even though that state is not
necessarily decided yet, and it may never be decided).
Proposals for a slot are stored in a set, since a primary
may propose to apply different commands for the same
slot if there are repeated changes of primaries.

Transition decide(slot , cmd , res,newState) specifies
that only one of the proposed new states can be decided.
Because cmd was performed speculatively, the decide
transition checks that the state decided in the prior slot,
if any, matches state s to which replica r applied cmd ;
prefix ordering is ensured.

Similar to active replication, transition learn models
a replica learning the decision associated with a slot.
With the update transition, a replica updates its state
based on what was learned for the slot. With active
replication, each replica performs each client operation;
in passive replication, only the primary performs client
operations and backups simply obtain the resulting
states.

Replicas that are experiencing unexpected delay (e.g.,
due the crash suspicion of the primary by a failure detec-
tor) can start acting as primary by performing transition
resetShadow to update their speculative state and ver-
sion, respectively stored in variables shadowStatereplica

Specification 3 Specification Passive Replication

var proposalsreplica [1...], decisions[1...], learnedreplica[1...]
appStatereplica , versionreplica , inputsν , outputsν ,
shadowStatereplica , shadowVersionreplica

initially:
∀s ∈ N+ : decisions[s] = ⊥
∀replica :

appStatereplica = ⊥ ∧ versionreplica = 1 ∧
shadowStatereplica = ⊥ ∧ shadowVersionreplica = 1 ∧
∀s ∈ N+ :

proposalsreplica [s] = ∅ ∧ learnedreplica[s] = ⊥

interface transition propose(replica, slot , cmd ,
res, newState):

precondition:
cmd ∈ inputsν ∧ slot = shadowVersionreplica ∧
learnedreplica[slot ] = ⊥ ∧
(res, newState) = nextState(shadowStatereplica , cmd)

action:
proposalsreplica [slot ] := proposalsreplica [slot ] ∪

{(shadowStatereplica , (cmd , res, newState))}
shadowStatereplica := newState
shadowVersionreplica := slot + 1

internal transition decide(slot , cmd , res, newState):
precondition:

decisions[slot ] = ⊥ ∧
∃r, s : (s, (cmd , res, newState)) ∈ proposalsr[slot ] ∧

(slot > 1⇒ decisions[slot − 1] = (−,−, s))
action:

decisions[slot ] := (cmd , res, newState)

internal transition learn(replica, slot):
precondition:

learnedreplica[slot ] = ⊥ ∧ decisions[slot ] 6= ⊥
action:

learnedreplica[slot ] := decisions[slot ]

interface transition update(replica, cmd , res, newState):
precondition:

(cmd , res, newState) = learnedreplica[versionreplica ]
action:

outputsν := outputsν ∪ {(cmd , res)}
appStatereplica := newState
versionreplica := versionreplica + 1

internal transition resetShadow(replica, version, state):
precondition:

version ≥ versionreplica ∧
(version = versionreplica ⇒ state = appStatereplica )

action:
shadowStatereplica := state
shadowVersionreplica := version

and shadowVersionreplica . The new shadow state may
itself be speculative; it must be a version at least as recent
as the latest learned state.

3 A GENERIC PROTOCOL

Specifications 2 and 3 contain internal variables and tran-
sitions that need to be refined for an executable imple-
mentation. We start by refining active replication. Multi-
Consensus (Specification 4) refines active replication and
contains no internal variables or transitions. As before,
invoke and response transitions (and corresponding



6 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, MANUSCRIPT ID

Our term Paxos [3] VSR [10] Zab [14] meaning
replica learner cohort server/observer stores copy of application state
certifier acceptor cohort server/participant maintains consensus state

sequencer leader primary leader certifier that proposes orderings
round ballot view epoch round of certification

round-id ballot number view-id epoch number uniquely identifies a round
normal case phase 2 normal case normal case processing in the absence of failures

recovery phase 1 view change recovery protocol to establish a new round
command proposal event record transaction a pair of a client id and an operation to be performed

round-stamp N/A viewstamp zxid uniquely identifies a sequence of proposals

TABLE 1: Translation between terms used in this paper and in the various replication protocols under consideration.

variables) have been omitted—they are the same as
in Specification 1. Transitions propose and update
of Specification 2 are omitted for the same reason. In
this section we explain how and why Multi-Consensus
works. Details of the refinement mappings are available
online at the Computer Society Digital Library [22].

3.1 Certifiers and Rounds
Multi-Consensus has two basic building blocks:
•A static set of n processes called certifiers. A minority

of these may crash. So for tolerating at most f faulty
processes, we require that n ≥ 2f + 1 must hold.
•An unbounded number of rounds.2

In each round, Multi-Consensus assigns to at most
one certifier the role of sequencer. The sequencer of a
round certifies at most one command for each slot. Other
certifiers can imitate the sequencer, certifying the same
command for the same slot and round; if two certifiers
certify a command in the same slot and the same round,
then it must be the same command. Moreover, a certifier
cannot retract a certification. Once a majority of certifiers
certify the command within a round, the command is
decided (and because certifications cannot be retracted the
command will remain decided thereafter). In Section 3.4
we show why two rounds cannot decide different com-
mands for the same slot.

Each round has a round-id that uniquely identifies the
round. Rounds are totally ordered by round-ids. A round
is in one of three modes: pending, operational, or wedged.
One round is the first round (it has the smallest round-
id), and initially only that round is operational. Other
rounds initially are pending. Two possible transitions on
the mode of a round are:
1) A pending round can become operational only if all

rounds with lower round-id are wedged;
2) A pending or operational round can become wedged

under any circumstance.
This implies that at any time at most one round is
operational and that wedged rounds can never become
unwedged.

3.2 Tracking Progress
In Specification 4, each certifier cert maintains a progress
summary progrsumcert [slot ] for each slot , defined as:

2. Table 1 translates between terms used in this paper and those
found in the papers describing the protocols under consideration.

Progress Summaries: A progress summary is a pair
〈rid , cmd〉 where rid is the identifier of a round and cmd
is a proposed command or ⊥, satisfying:
• If cmd = ⊥, then the progress summary guarantees

that no round with id less than rid can ever decide, or
have decided, a proposal for the slot.
• If cmd 6= ⊥, then the progress summary guarantees that

if a round with id rid ′ such that rid ′ ≤ rid decides (or
has decided) a proposal cmd ′ for the slot, then cmd =
cmd ′.
•Given two progress summaries 〈rid , cmd〉 and
〈rid , cmd ′〉 for the same slot, if neither cmd nor cmd ′

equals ⊥, then cmd = cmd ′.

We define a total ordering as follows:
〈rid ′, cmd ′〉 � 〈rid , cmd〉 for the same slot iff
• rid ′ > rid ; or
• rid ′ = rid ∧ cmd ′ 6= ⊥ ∧ cmd = ⊥.
At any certifier, the progress summary for a slot is
monotonically non-decreasing.

3.3 Normal Case Processing
Each certifier cert supports exactly one round-id ridcert ,
initially 0. The normal case holds when a majority of
certifiers support the same round-id, and one of these
certifiers is sequencer (signified by isSeqcert being true).

Transition certifySeq(cert , slot , 〈rid , cmd〉) is
performed when sequencer cert certifies command
cmd for the given slot and round. The condition
progrsumcert [slot ] = 〈rid ,⊥〉 holds only if no command
can be decided in this slot by a round with an id
lower than ridcert . The transition requires that slot is
the lowest empty slot of the sequencer. If the transition
is performed, then cert updates progrsumcert [slot ] to
reflect that a command decided in this round must be
cmd . Sequencer cert also notifies all other certifiers by
adding (cert , slot , 〈rid , cmd〉) to set certificsν (modeling
a broadcast to the certifiers).

A certifier that receives such a message checks
whether the message contains the same round-id that it
is currently supporting and whether the progress sum-
mary in the message exceeds its own progress summary
for the same slot. If so, then the certifier updates its own
progress summary and certifies the proposed command
(transition certify(cert , slot , 〈rid , cmd〉)).

Transition observeDecision(replica, slot , cmd) at
replica is enabled if a majority of certifiers in the same



RENESSE et al.: VIVE LA DIFFÉRENCE: PAXOS VS. VIEWSTAMPED REPLICATION VS. ZAB 7

Specification 4 Multi-Consensus

var ridcert , isSeqcert , progrsumcert [1...], certificsν , snapshotsν

initially: certificsν = snapshotsν = ∅ ∧
∀cert : ridcert = 0 ∧ isSeqcert = false ∧
∀slot ∈ N+ : progrsumcert [slot ] = 〈0,⊥〉

interface transition certifySeq(cert , slot , 〈rid , cmd〉):
precondition:

isSeqcert ∧rid = ridcert ∧progrsumcert [slot ] = 〈rid ,⊥〉 ∧
(∀s ∈ N+ : progrsumcert [s] = 〈rid ,⊥〉 ⇒ s ≥ slot) ∧
∃replica : cmd ∈ proposalsreplica [slot ]

action:
progrsumcert [slot ] := 〈rid , cmd〉
certificsν := certificsν ∪ {(cert , slot , 〈rid , cmd〉)}

interface transition certify(cert , slot , 〈rid , cmd〉):
precondition:
∃cert ′ : (cert ′, slot , 〈rid , cmd〉) ∈ certificsν ∧
ridcert = rid ∧ 〈rid , cmd〉 � progrsumcert [slot ]

action:
progrsumcert [slot ] := 〈rid , cmd〉
certificsν := certificsν ∪ {(cert , slot , 〈rid , cmd〉)}

interface transition observeDecision(replica, slot , cmd):
precondition:
∃rid :
|{cert | (cert , slot , 〈rid , cmd〉) ∈ certificsν}| > n

2
∧

learnedreplica[slot ] = ⊥
action:

learnedreplica[slot ] := cmd

interface transition supportRound(cert , rid , proseq):
precondition:

rid > ridcert

action:
ridcert := rid ; isSeqcert := false
snapshotsν :=

snapshotsν ∪ {(cert , rid , proseq , progrsumcert)}

interface transition recover(cert , rid ,S):
precondition:

ridcert = rid ∧ ¬isSeqcert ∧ |S| > n
2
∧

S ⊆ {(id , prog) | (id , rid , cert , prog) ∈ snapshotsν}
action:
∀s ∈ N+ :
〈r, cmd〉 := max�{prog [s] | (id , prog) ∈ S}
progrsumcert [s] := 〈rid , cmd〉
if cmd 6= ⊥ then

certificsν := certificsν ∪ {(cert , s, 〈ridcert , cmd〉)}
isSeqcert := true

round have certified cmd in slot . If so, then the command
is decided and, as explained in the next section, all
replicas that undergo the observeDecision transition
for this slot will decide on the same command. In-
deed, internal variable decisions[slot ] of Specification 2
is defined to be cmd if each certifier cert in a majority
have certified (cert , slot , 〈rid , cmd〉) for some rid (and
⊥ if no such rid exists). The details of the refinement
mapping are available at the Computer Society Digital
Library [22].

3.4 Recovery
When an operational round is no longer certifying
proposals, perhaps because its sequencer has crashed

or is slow, the round can be wedged and a round
with a higher round-id can become operational. A
certifier cert transitions to supporting a new round-
id rid and prospective sequencer proseq (transition
supportRound(cert , rid , proseq)). This transition only
increases ridcert . The transition sends the certifier’s snap-
shot by adding it to the set snapshotsν . A snapshot is a
four-tuple (cert , rid , proseq , progrsumcert) containing the
certifier’s identifier, its current round-id, the identifier
of proseq , and the certifier’s list of progress summaries.
Note that a certifier can send at most one snapshot for
each round.

Round rid with sequencer proseq is operational, by
definition, if a majority of certifiers support rid and
added (cert , rid , proseq , progrsumcert) to set snapshots.
Clearly, the majority requirement guarantees that there
cannot be two rounds simultaneously operational, nor
can there be operational rounds that do not have exactly
one sequencer. Certifiers that support rid can no longer
certify commands in rounds prior to rid . Consequently,
if a majority of certifiers support a round-id larger than
x, then all rounds with an id of x or lower are wedged.

Transition recover(cert , rid ,S) is enabled at cert if
S contains snapshots for rid and sequencer cert from
a majority of certifiers. The sequencer helps ensure that
the round does not decide commands inconsistent with
prior rounds. For each slot, sequencer cert determines
the maximum progress summary 〈r, cmd〉 for the slot
in the snapshots contained in S. It then sets its own
progress summary for the slot to 〈rid , cmd〉. It is easy
to see that rid ≥ r.

We argue that 〈rid , cmd〉 satisfies the definition of
progress summary in Section 3.2. All certifiers in S
support rid and form a majority. Thus, it is not possible
for any round between r and rid to decide a command,
because none of these certifiers can certify a command
in those rounds. There are two cases:
• If cmd = ⊥, then no command can be decided before
r, so no command can be decided before rid . Hence,
〈rid ,⊥〉 is a correct progress summary.
• If cmd 6= ⊥, then a command decided by r or a

round prior to r must be cmd . Since no command
can be decided by rounds between r and rid , progress
summary 〈rid , cmd〉 is correct.

The sequencer sets isSeqcert flag upon recovery. As a
result, the sequencer can propose new commands. The
normal case for the round begins and holds as long as a
majority of certifiers support the corresponding round-
id.

3.5 Passive Replication

Specification 4 does not satisfy prefix ordering (Sec-
tion 2.2) because any proposal can be decided in a slot,
including a slot that does not correspond to a state
decided in the prior slot. Thus Multi-Consensus does
not refine Passive Replication. One way of implement-
ing prefix ordering would be for the primary to delay



8 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, MANUSCRIPT ID

proposing a command for a slot until it knows decisions
for all prior slots. But that would be slow.

A better solution is to refine Multi-Consensus and
obtain a specification that also refines Passive Replica-
tion as well as satisfying prefix ordering. We call this
specification Multi-Consensus-PO. Multi-Consensus-PO
guarantees that each decision is the result of an operation
applied to the state decided in the prior slot (except for
the first slot). We complete the refinement by adding two
preconditions:3

(i) In Multi-Consensus-PO, slots have to be decided in
sequence. To guarantee this, commands are certified in
order by adding the following precondition to transi-
tion certify: slot > 1⇒ ∃c 6= ⊥ : progrsumcert [slot −
1] = 〈rid , c〉. Thus, if in some round there exists a
majority of certifiers that have certified a command
in slot , then there also exists a majority of certifiers
that have certified a command in the prior slot.

(ii) To guarantee that a decision in slot is based on the
state decided in the prior slot, we add the following
precondition to transition certifySeq:
slot > 1⇒ ∃s :

cmd = (s,−) ∧
progrsumcert [slot − 1] = 〈rid , (−, (−,−, s))〉.

This works due to properties of progress summaries:
if a command has been or will be decided in round rid
or a prior round for slot − 1, then it is the command
in progrsumcert [slot − 1]. Therefore, if the sequencer’s
proposal for slot is decided in round rid , the proposal
will be based on the state decided in slot − 1. If the
primary and the sequencer are co-located, as they
usually are, this transition precondition is satisfied
automatically, because the primary computes states in
order.

Multi-Consensus-PO inherits transitions invoke and
response from Specification 1 as well as transitions
propose, update, and resetShadow from Specifica-
tion 3. The variables contained in these transitions are
inherited as well.

Passive replication protocols VSR and Zab share the
following design decision in the recovery procedure:
The sequencer broadcasts a single message containing
its entire snapshot rather than sending separate certifi-
cations for each slot. Certifiers wait for this message and
overwrite their own snapshot with its contents before
they certify new commands in this round. As a result,
these progrsumcert slots have the same round identifier
at each certifier and can thus be maintained as a separate
variable.

3. These two preconditions, combined with the condition that
isSeqcert must hold in transition certifySeq, serve as the primary
order and integrity properties defined in [25] to implement primary-
backup replication. The condition isSeqcert is equivalent to the barrier
function τPaxos used in the same paper to implement primary-backup
on top of a white-box consensus service.

certify!

learn!

learn!

certifySeq!

(slot,#rid,#cmd)#

normal#case#with#numbers##

Cer5fier#2#

Cer5fier#3#

Sequencer/##
Cer5fier#1#

designated#
majority#
(VSR)#

(slot,#rid)#

(slot,#cmd)#

1

2

3

certify!
learn!

Fig. 3: Normal case processing at three certifiers. Dots
indicate transitions, and arrows between certifiers are
messages.

4 IMPLEMENTATION

Specifications Multi-Consensus and Multi-Consensus-
PO do not contain internal variables or transitions.
However, they only specify which transitions may be
performed, not when transitions should be performed.
We discuss final refinements of these specifications that
produce Paxos, VSR, and Zab.

4.1 Normal Case
We first turn to implementing state and transitions
of Multi-Consensus and Multi-Consensus-PO. The first
question is how to implement the variables. Variables
inputsν , outputsν , certificsν , and snapshotsν are not per-
process but global. They model messages that have been
sent. In actual protocols, this state is implemented by
the network: a value in either set is implemented by
a message on the network tagged with the appropriate
type, such as snapshot.

The remaining variables are all local to a process such
as a client, a replica, or a certifier. This state can be
implemented as ordinary program variables. In Zab,
progrsumcert is implemented by a queue of commands.
In VSR, progrsumcert is replaced by the application state
and a counter that records the number of updates made
to the state in this round. In Paxos, a progress summary
is simply a pair consisting of a round identifier and a
command.

Fig. 3 illustrates normal case processing in the pro-
tocols. The figure shows three certifiers (f = 1). Upon
receiving an operation from a client (not shown):
1) Sequencer cert proposes a command for the next

open slot and sends a message to the other certifiers
(maps to certifySeq(cert , slot , 〈rid , cmd〉)). In VSR
and Zab, the command is a state update that results
from executing the client operation; in Paxos, the
command is the operation itself.

2) Upon receipt by a certifier cert , if cert supports
the round-id rid in the message, then cert up-
dates its slot and replies to the sequencer (transition
certify(cert , slot , 〈rid , cmd〉)). If not, the message
can be ignored. With VSR and Zab, prefix-ordering
must be ensured, and cert only replies to the se-
quencer if its progress summary for slot − 1 contains
a non-empty command for rid .

3) If the sequencer receives successful responses from a
majority of certifiers (transition observeDecision),



RENESSE et al.: VIVE LA DIFFÉRENCE: PAXOS VS. VIEWSTAMPED REPLICATION VS. ZAB 9

s"

s"

(rid)"

(rid,"round+stamp)"

s"

1

2 r"

(rid,"appState)"
s"

(slot,"rid,"cmd)*"

r"

s"

Recovery"case"with"numbers"+"paxos""

(rid)"

Cer>fier"2"

Cer>fier"3"

Prosp."seq."/""
Cer>fier"1"

(rid,"snapshotcert)"

Recovery"case"with"numbers"–"vsr/harp"

Recovery"case"with"numbers"–"Zab"

(rid)"

Cer>fier"2"

Cer>fier"3"

View"mgr."/"
Cer>fier"1"

(rid,"round1stamp)"

(rid,"design.4maj.)"

2

2.5"

3

3

r"

s"

s"

s"

s"

1

2

1

(rid,4snapshotmax)"
Cer>fier"2"

Cer>fier"3"

Prosp."seq./""
Cer>fier"1"

3

(ridcert)"

0

2.5"

obtain"missing"
cmds."

(a) Paxos

s"

s"

(rid)"

(rid,"round+stamp)"

s"

1

2 r"

(rid,"appState)"
s"

(slot,"rid,"cmd)*"

r"

s"

Recovery"case"with"numbers"+"paxos""

(rid)"

Cer>fier"2"

Cer>fier"3"

Prosp."seq."/""
Cer>fier"1"

(rid,"snapshotcert)"

Recovery"case"with"numbers"–"vsr/harp"

Recovery"case"with"numbers"–"Zab"

(rid)"

Cer>fier"2"

Cer>fier"3"

View"mgr."/"
Cer>fier"1"

(rid,"round1stamp)"

(rid,"design.4maj.)"

2

2.5"

3

3

r"

s"

s"

s"

s"

1

2

1

(rid,4snapshotmax)"
Cer>fier"2"

Cer>fier"3"

Prosp."seq./""
Cer>fier"1"

3

(ridcert)"

0

2.5"

obtain"missing"
cmds."

(b) Zab

s"

s"

(rid)"

(rid,"round+stamp)"

s"

1

2 r"

(rid,"appState)"
s"

(slot,"rid,"cmd)*"

r"

s"

Recovery"case"with"numbers"+"paxos""

(rid)"

Cer>fier"2"

Cer>fier"3"

Prosp."seq."/""
Cer>fier"1"

(rid,"snapshotcert)"

Recovery"case"with"numbers"–"vsr/harp"

Recovery"case"with"numbers"–"Zab"

(rid)"

Cer>fier"2"

Cer>fier"3"

View"mgr."/"
Cer>fier"1"

(rid,"round1stamp)"

(rid,"design.4maj.)"

2

2.5"

3

3

r"

s"

s"

s"

s"

1

2

1

(rid,4snapshotmax)"
Cer>fier"2"

Cer>fier"3"

Prosp."seq./""
Cer>fier"1"

3

(ridcert)"

0

2.5"

obtain"missing"
cmds."

(c) VSR

Fig. 4: Depiction of the recovery phase. Dots represent transitions and are labeled with s and r, respectively denoting
a supportRound and a recover transition. Messages of the form (x, y)* contain multiple (x,y) tuples.

then the sequencer learns the decision and broadcasts
a decide message for the command to the replicas
(resulting in learn transitions that update the repli-
cas, see Specifications 2 and 3).

The various protocols reflect other different design deci-
sions:
• In VSR, a specific majority of certifiers is determined a

priori and fixed for each round. We call this a designated
majority. In Paxos and Zab, any certifier can certify
proposals.
• In VSR, replicas are co-located with certifiers, and

certifiers speculatively update their local replica as part
of certification. A replica could be updated before some
proposed command is decided, so if another command
is decided then the state of the replica must be rolled
back (as we shall see later). Upon learning that the
command has been decided (Step 3), the sequencer
responds to the client.
• Some versions of Paxos use leases [26], [3] for read-

only operations. Leases have the advantage that read-
only operations can be served at a single replica while
still guaranteeing linearizability. This requires synchro-
nized clocks (or clocks with bounded drift), and the
sequencer obtains a lease for a certain time period. A
sequencer that is holding a lease can thus forward read-
only operations to any replica, inserting the operation
in the ordered stream of commands sent to that replica.
• ZooKeeper, which is built upon Zab, offers the option

to use leasing or to have any replica handle read-only
operations individually, circumventing Zab. The latter
is efficient, but a replica might not have learned the
latest decided proposals so its clients can receive re-
sults based on stale state (such reads satisfy sequential
consistency [27]).

For replicas to learn about decisions, two options exist:
• Certifiers can respond to the sequencer. The sequencer

learns that its proposed command has been decided
if the sequencer receives responses from a majority
(counting itself). The sequencer then notifies the repli-
cas.
• Certifiers can broadcast notifications to all replicas, and

each replica can individually determine if a majority of
the certifiers have certified a particular command.

There is a trade-off between the two options: with n
certifiers and m replicas, the first approach requires
n+m messages and two network latencies. The second

approach requires n×m messages but involves only one
network latency. All implementations we know of use
the first approach.

4.2 Recovery

Fig. 4 illustrates the recovery steps in the protocols.
With Paxos, a certifier proseq that notices a lack of

progress (typically the certifier designated by a weak
leader election protocol Ω [28]) may start the following
process to try to become sequencer itself (see Fig. 4a):
• Step 1: Prospective sequencer proseq supports a new

round rid , proposing itself as sequencer (transition
supportRound(proseq , rid , proseq)), and queries at
least a majority of certifiers.
• Step 2: Upon receipt, a certifier cert that transitions to

supporting round rid and certifier proseq as sequencer
(supportRound(cert , rid , proseq)) responds with its
snapshot.
• Step 3: Upon receiving responses from a majority,

certifier proseq learns that it is sequencer of round rid
(transition recover(proseq , rid ,S)). Normal case op-
eration resumes after proseq broadcasts the command
with the highest rid for each slot not known to be
decided.

Prospective sequencers in Zab are designated by Ω as
well. When Ω determines that a sequencer has become
unresponsive, it initiates a protocol (see Fig. 4b) in which
a new sequencer is elected:
• Step 0: Ω proposes a prospective sequencer proseq and

notifies the certifiers. Upon receipt, a certifier sends a
message containing the round-id it supports to proseq .
• Step 1: Upon receiving such messages from a ma-

jority of certifiers, prospective sequencer proseq se-
lects a round-id rid that is one larger than the max-
imum it received, transitions to supporting it (tran-
sition supportRound(proseq , rid , proseq)), and broad-
casts this to the other certifiers for approval.
• Step 2: Upon receipt, if certifier cert can support rid

and has not agreed to a certifier other than proseq be-
coming sequencer of the round, then it performs tran-
sition supportRound(cert , rid , proseq). Zab exploits
prefix ordering to optimize the recovery protocol. In-
stead of sending its entire snapshot to the prospective
sequencer, a certifier that transitions to supporting
round rid sends a round-stamp. A round-stamp is a



10 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, MANUSCRIPT ID

lexicographically ordered pair consisting of the round-
id in the snapshot (the same for all slots) and the
number of slots in the round for which it has certified
a command.
• Step 2.5: Once proseq receives responses from a ma-

jority, it computes the maximum round-stamp and de-
termines if commands are missing and retrieves them
from the certifier certmax with the highest received
round-stamp. If proseq is missing too many commands
(e.g. if proseq did not participate in the last round
certmax participated in), certmax sends its entire snap-
shot to proseq .
• Step 3: After receiving the missing commands, proseq

broadcasts its snapshot. In practice the snapshot is a
checkpoint of its state with a sequence of state updates,
to the certifiers (transition recover(proseq , rid ,S)).
Certifiers acknowledge receipt of this snapshot and,
upon receiving acknowledgments from a majority,
proseq learns that it is now the sequencer of rid and
broadcasts a commit message before resuming the nor-
mal case protocol (not shown in the picture).
In VSR, each round-id has a pre-assigned view manager

v that is not necessarily the sequencer. A round-id is a
lexicographically ordered pair comprising a number and
the process identifier of the view manager.

The view manager v of round-id starts the following
recovery procedure if the protocol seems stalled (see
Fig. 4c):
• Step 1: v starts supporting round rid (transition
supportRound(v, rid , v)), and it queries at least a
majority of certifiers.
• Step 2: Upon receipt of such a query, a

certifier cert starts supporting rid (transition
supportRound(cert , rid , v)). Similar to Zab, cert
sends its round-stamp to v.
• Step 2.5: Upon receiving round-stamps from a ma-

jority of certifiers, view manager v uses the set of
certifiers that responded as the designated majority
for the round and assigns the sequencer role to the
certifier p that reported the highest round-stamp. The
view manager then notifies certifier p, requesting it to
become sequencer.
• Step 3: Sequencer p, having the latest state, broadcasts

its snapshot (transition recover(p, rid ,S)). In the case
of VSR, the state that the new sequencer sends is its
application state rather than a snapshot.

4.3 Garbage Collection

Multi-Consensus has each certifier accumulating state
about all slots, which does not scale. For Paxos, the issue
has received attention in [7], [29]. In VSR, no garbage col-
lection is required. Certifiers and replicas are co-located,
and they only store the most recent round-id they
adopted; application state is updated upon certification
of a command. During recovery, the sequencer simply
sends application state to the replicas and, consequently,
any decided commands need not be replayed.

4.4 Liveness
All of the protocols require—in order to make progress—
that at most a minority of certifiers experience crash fail-
ures. If the current round is no longer making progress,
a new round must become operational. If certifiers are
slow at making this transition in the face of an actual
failure, then performance may suffer. However, if cer-
tifiers are too aggressive about starting this transition,
rounds will become wedged before being able to decide
commands, even in the absence of failures.

To guarantee progress, some round with a correct
sequencer must eventually not get preempted by a
higher round [30], [31]. Such a guarantee is difficult or
even impossible to make [32], but with careful failure
detection a good trade-off can be achieved between rapid
failure recovery and spurious wedging of rounds [29].

In this section, we look at how the various protocols
optimize progress.

4.4.1 Partial Memory Loss
If certifiers keep state on stable storage (say, a disk), then
a crash followed by a recovery is not treated as a failure
but instead as the affected certifier being slow. Stable
storage allows protocols like Paxos, VSR, and Zab to deal
with such transients. Even if all machines crash, then as
long as a majority eventually recovers their state from
before the crash, the service can continue operating.

4.4.2 Total Memory Loss
In [7, §5.1], the developers of Google’s Chubby ser-
vice describe a way for Paxos to deal with permanent
memory loss of a certifier (due to disk corruption). The
memory loss is total, so the recovering certifier starts in
an initial state. It copies its state from another certifier
and then waits until it has seen one decision before
starting to participate fully in the Paxos protocol again.
This optimization is flawed and it breaks the invariant
that a certifier’s round-id can only increase over time
(confirmed by the authors of [7]). By copying the state
from another certifier, it may, as it were, go back in time,
which can cause divergence.

Nonetheless, total memory loss can be tolerated by
extending the protocols. The original Paxos paper [3]
shows how the set of certifiers can be reconfigured to
tolerate total memory loss, and this has been worked
out in greater detail in Microsoft’s SMART project [33]
and later for Viewstamped Replication as well [11]. Zab
also supports reconfiguration [34].

5 DISCUSSION

Table 2 summarizes some differences between Paxos,
VSR, and Zab. These differences demonstrate that the
protocols do not refine one another; they also have
pragmatic consequences, as discussed below. The com-
parisons are based on published algorithms; actual im-
plementations may vary. We organize the discussion
around normal case processing and recovery overheads.



RENESSE et al.: VIVE LA DIFFÉRENCE: PAXOS VS. VIEWSTAMPED REPLICATION VS. ZAB 11

What Section Paxos VSR Zab
replication style 2.2 active passive passive

read-only operations 4.1 leasing certification read any replica/leasing
designated majority 4.1, 4.2 no yes no

time of execution 4.1 upon decision upon certification depends on role
sequencer selection 4.2 majority vote or deterministic view manager assigned majority vote
recovery direction 4.2 two-way from sequencer two-way/from sequencer

recovery granularity 4.2 slot-at-a-time application state command prefix
tolerates memory loss 4.4.1, 4.4.2 reconfigure partial reconfigure

TABLE 2: Overview of important differences between the various protocols.

5.1 Normal Case

5.1.0.1 Passive vs. Active Replication: In active
replication, at least f + 1 replicas each must execute
operations. In passive replication, only the sequencer ex-
ecutes operations, but it has to propagate state updates to
the backups. Depending on the overheads of executing
operations and the size of state update messages, one
may perform better than the other. Passive replication,
however, has the advantage that execution at the se-
quencer does not have to be deterministic and can take
advantage of parallel processing on multiple cores.

5.1.0.2 Read-only Optimizations: Paxos and
Zookeeper support leasing for read-only operations,
but there is no reason why leasing could not be added
to VSR. Indeed, Harp (built on VSR) uses leasing. A
lease improves latency of read-only operations in the
normal case, but it delays recovery in case of a failure.
ZooKeeper offers the option whether to use leases.
Without leases, ZooKeeper clients read any replica at
any time. Doing so may cause replicas to read stale
state.

5.1.0.3 Designated Majority: VSR uses designated
majorities. An advantage is that other (typically f ) cer-
tifiers and replicas are not employed during normal
operation, and they play only a small role during recov-
ery, thereby saving almost half of the overhead. There
are two disadvantages: (1) if the designated majority
contains the slowest certifier then the protocol will run
as slow as the slowest, rather than the “median” certifier;
and (2) if one of the certifiers in the designated majority
crashes, becomes unresponsive, or is slow, then recovery
is necessary. In Paxos and Zab, recovery is necessary only
if the sequencer crashes. A middle ground is achieved
by using 2f + 1 certifiers and f + 1 replicas.

5.1.0.4 Time of Command Execution: In VSR,
replicas apply state updates speculatively when they are
certified, possibly before they are decided. Commands
are forgotten as soon as they are applied to the state. So
no garbage collection is necessary. A disadvantage is that
response to a client operation must be delayed until all
replicas in the designated majority have updated their
application state. In other protocols, only one replica
must update its state and compute a response, because
if the replica fails then another deterministic replica is
guaranteed to compute the same response. At the time of
failing each command that led to this state and response

has been certified by a majority and, therefore, the state
and response are recoverable.

In Zab, the primary also speculatively applies client
operations to compute state updates before these up-
dates are decided. Replicas apply state updates after
those updates have been decided. In Paxos, there is no
speculative execution.

5.2 Recovery
5.2.0.1 Sequencer Selection: VSR selects a se-

quencer that has the most up-to-date state (taking ad-
vantage of prefix ordering), so VSR does not have to
recover state from the other certifiers, which simplifies
and streamlines recovery.

5.2.0.2 Recovery Direction: Paxos allows the
prospective sequencer to recover state of previous slots
and, at the same time, propose new commands for
slots where it has already retrieved sufficient state.
However, all certifiers must send their certification state
to the prospective sequencer before it can re-propose
commands for slots. With VSR, the sequencer is the
certifier with the highest round-stamp, and it does not
need to recover state from the other certifiers. A similar
optimization is sketched in the description of the Zab
protocol (and implemented in the Zookeeper service).

With Paxos and Zab, garbage collection of the certifi-
cation state is important for ensuring that the amount of
state exchanged on recovery does not become too large.
A recovering replica can be brought up-to-date faster by
replaying decided commands that were missed rather
than by copying state.

With VSR, the selected sequencer pushes its snapshot
to the other certifiers. The snapshot has to be transferred
and processed prior to processing new certification re-
quests, possibly resulting in a performance interruption.

5.2.0.3 Recovery Granularity: In VSR, the entire
application state is sent from the sequencer to the back-
ups. For VSR, this state is transaction manager state and
is small, but this approach does not scale. However, in
some cases that cost is unavoidable. For example, if a
replica has a disk failure, then replaying all commands
from time 0 is not scalable either, and the recovering
replica instead will have to seed its state from another
one. In this case, the replica will load a checkpoint and
then replay missing commands to bring the checkpoint
up-to-date—a technique used in Zab (and Harp, as well).
With passive replication protocols, replaying missing
commands simply means applying state updates; with



12 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, MANUSCRIPT ID

active replication protocols, replaying commands entails
re-executing commands. Depending on the overhead
of executing operations and the size of state update
messages, one or the other approach may perform better.

5.2.0.4 Tolerating Memory Loss: An option sug-
gested by VSR is to retain on disk only a round-id; the
remaining state is kept in memory. This technique works
only in restricted situations, where at least one certifier
has the most up-to-date state in memory.

6 A BIT OF HISTORY

We believe the first consensus protocol to use rounds
and sequencers is due to Dwork, Lynch, and Stockmeyer
(DLS) [30]. Rounds in DLS are countable and round
b + 1 cannot start until round b has run its course.
Thus, DLS does not refine Multi-Consensus(even though
Multi-Consensus does use rounds and sequencers).

Chandra and Toueg’s work on consensus [31] for-
malized conditions under which consensus protocols
terminate. Their consensus protocol resembles the Paxos
single-decree Synod protocol, and it refines Multi-
Consensus.

To the best of our knowledge, majority intersec-
tion to avoid potential inconsistencies first appears in
Thomas [35]. Quorum replication [35] supports only
storage objects with read and write operations (or,
equivalently, get and put operations in the case of a
Key-Value Store).

7 CONCLUSION

Paxos, VSR, and Zab are three well-known replication
protocols for asynchronous environments that admit
bounded numbers of crash failures. This paper de-
scribes a specification for Multi-Consensus, a generic
specification that contains important design features that
the three protocols share. The features include an un-
bounded number of totally ordered rounds, a static set
of certifiers, and at most one sequencer per round.

The three protocols differ in how they refine Multi-
Consensus. We disentangled fundamentally different de-
sign decisions in the three protocols and considered
impact on performance. Compute-intensive services are
better off with a passive replication strategy, such as used
in VSR and Zab (provided that state updates are of a
reasonable size). To achieve predictable low-delay per-
formance for short operations during both normal case
execution and recovery, an active replication strategy
without designated majorities, such as used in Paxos,
is the best option.

Acknowledgments
We are grateful for the anonymous reviews and dis-
cussions with Flavio Junqueira and Marco Serafini. The
authors are supported in part by AFOSR grants FA2386-
12-1-3008, F9550-06-0019, by the AFOSR MURI “Sci-
ence of Cyber Security: Modeling, Composition, and

Measurement” as AFOSR grant FA9550-11-1-0137, by
NSF grants 0430161, 0964409, 1040689, 1047540, and
CCF-0424422 (TRUST), by ONR grants N00014-01-1-0968
and N00014-09-1-0652, by DARPA grants FA8750-10-2-
0238 and FA8750-11-2-0256, by DOE ARPA-e grant DE-
AR0000230, by MDCN/iAd grant 54083, and by grants
from Microsoft Corporation, Facebook Inc., and Ama-
zon.com.

REFERENCES
[1] L. Lamport, “Specifying concurrent program modules,” Trans. on

Programming Languages and Systems, vol. 5, no. 2, pp. 190–222, Apr.
1983.

[2] N. A. Lynch and F. W. Vaandrager, “Forward and backward
simulations, ii: Timing-based systems,” Inf. Comput., vol. 128,
no. 1, pp. 1–25, 1996.

[3] L. Lamport, “The part-time parliament,” Trans. on Computer Sys-
tems, vol. 16, no. 2, pp. 133–169, 1998.

[4] ——, “Time, clocks, and the ordering of events in a distributed
system,” CACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[5] F. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22,
no. 4, pp. 299–319, Dec. 1990.

[6] M. Burrows, “The Chubby Lock Service for loosely-coupled dis-
tributed systems,” in 7th Symposium on Operating System Design
and Implementation, Seattle, WA, Nov. 2006.

[7] T. Chandra, R. Griesemer, and J. Redstone, “Paxos made live:
an engineering perspective,” in Proc. of the 26th ACM Symp. on
Principles of Distributed Computing. Portland, OR: ACM, May
2007, pp. 398–407.

[8] M. Isard, “Autopilot: Automatic data center management,” Oper-
ating Systems Review, vol. 41, no. 2, pp. 60–67, Apr. 2007.

[9] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn, “Ceph: A
scalable, high-performance distributed file system,” in Proceedings
of the 7th Conference on Operating Systems Design and Implementation
(OSDI06), Nov. 2006.

[10] B. Oki and B. Liskov, “Viewstamped Replication: A general
primary-copy method to support highly-available distributed sys-
tems,” in Proc. of the 7th ACM Symp. on Principles of Distributed
Computing. Toronto, Ontario: ACM SIGOPS-SIGACT, Aug. 1988,
pp. 8–17.

[11] B. Liskov and J. Cowling, “Viewstamped Replication revisited,”
MIT, Tech. Rep. MIT-CSAIL-TR-2012-021, Jul. 2012.

[12] B. Lampson and H. Sturgis, “Crash recovery in a distributed data
storage system,” Xerox PARC, Palo Alto, CA, Tech. Rep., 1976.

[13] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and
M. Williams, “Replication in the Harp file system,” in Proc. of
the Thirteenth ACM Symp. on Operating Systems Principles, Pacific
Grove, CA, Oct. 1991.

[14] F. Junqueira, B. Reed, and M. Serafini, “Zab: High-performance
broadcast for primary-backup systems,” in Int’l Conf. on Depend-
able Systems and Networks (DSN-DCCS’11). IEEE, 2011.

[15] P. Hunt, M. Konar, F. Junqueira, and B. Reed, “ZooKeeper: Wait-
free coordination for Internet-scale systems,” in USENIX Annual
Technology Conference, 2010.

[16] B. Lampson, “How to build a highly available system using
consensus,” in Distributed systems (2nd Ed.), S. Mullender, Ed.
New York, NY: ACM Press/Addison-Wesley Publishing Co., 1993,
pp. 1–17.

[17] C. Cachin, “Yet another visit to Paxos,” IBM Research, Zurich,
Switzerland, Tech. Rep. RZ3754, 2009.

[18] B. Lampson, “The ABCDs of Paxos,” in Proc. of the 20th ACM
Symp. on Principles of Distributed Computing. Newport, RI: ACM
Press, 2001.

[19] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness
condition for concurrent objects,” Trans. on Programming Languages
and Systems, vol. 12, no. 3, pp. 463–492, Jul. 1990.

[20] J. Aizikowitz, “Designing distributed services using refinement
mappings,” Ph.D. dissertation, Cornell University, 1990.

[21] L. Lamport, “Byzantizing Paxos by refinement,” in Proceedings
of the 25th International Conference on Distributed Computing, ser.
DISC’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 211–224.

[22] “http://www.computer.org/csdl/trans/tq/index.html.”



RENESSE et al.: VIVE LA DIFFÉRENCE: PAXOS VS. VIEWSTAMPED REPLICATION VS. ZAB 13

[23] P. Alsberg and J. Day, “A principle for resilient sharing of
distributed resources,” in Proc. of the 2nd Int. Conf. on Software
Engineering (ICSE’76). San Francisco, CA: IEEE, Oct. 1976, pp.
627–644.

[24] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in
the presence of faults,” J. ACM, vol. 27, no. 2, pp. 228–234, Apr.
1980.

[25] F. P. Junqueira and M. Serafini, “On barriers and the gap be-
tween active and passive replication,” in Distributed Computing.
Springer, 2013, vol. 8205, pp. 299–313.

[26] C. Gray and D. Cheriton, “Leases: an efficient fault-tolerant
mechanism for distributed file cache consistency,” in Proc. of the
Twelfth ACM Symp. on Operating Systems Principles, Litchfield Park,
AZ, Nov. 1989.

[27] L. Lamport, “How to make a multiprocessor computer that
correctly executes multiprocess programs,” IEEE Trans. Comput.,
vol. 28, no. 9, pp. 690–691, Sep. 1979.

[28] N. Schiper and S. Toueg, “A robust and lightweight stable leader
election service for dynamic systems,” in Int’l Conf. on Dependable
Systems and Networks (DSN’08). IEEE, 2008, pp. 207–216.

[29] J. Kirsch and Y. Amir, “Paxos for system builders: an overview,”
in Proc. of the 2nd Workshop on Large-Scale Distributed Systems and
Middleware (LADIS’08), 2008, pp. 1–6.

[30] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
presence of partial synchrony,” in Proc. of the 3rd ACM Symp. on
Principles of Distributed Computing. Vancouver, BC: ACM SIGOPS-
SIGACT, Aug. 1984, pp. 103–118.

[31] T. Chandra and S. Toueg, “Unreliable failure detectors for asyn-
chronous systems,” in Proc. of the 11th ACM Symp. on Principles of
Distributed Computing. Montreal, Quebec: ACM SIGOPS-SIGACT,
Aug. 1991, pp. 325–340.

[32] M. Fischer, N. Lynch, and M. Patterson, “Impossibility of dis-
tributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374–382, Apr. 1985.

[33] J. Lorch, A. Adya, W. Bolosky, R. Chaiken, J. Douceur, and J. How-
ell, “The SMART way to migrate replicated stateful services,” in
Proc. of the 1st Eurosys Conference. Leuven, Belgium: ACM, Apr.
2006, pp. 103–115.

[34] A. Shraer, B. Reed, D. Malkhi, and F. Junqueira, “Dynamic re-
configuration of primary/backup clusters,” in Annual Technical
Conference (ATC’12). USENIX, Jun. 2012.

[35] R. Thomas, “A solution to the concurrency control problem
for multiple copy databases,” in Proc. of COMPCON 78 Spring.
Washington, D.C.: IEEE Computer Society, Feb. 1978, pp. 88–93.

Robbert van Renesse is a Principal Research
Scientist in the Department of Computer Sci-
ence at Cornell University. He received a
Ph.D. from the Vrije Universiteit in Amster-
dam in 1989. After working at AT&T Bell Labs
in Murray Hill he joined Cornell in 1991. He
was associate editor of IEEE Transactions on
Parallel and Distributed Systems from 1997
to 1999, and he is currently associate editor
for ACM Computing Surveys. His research
interests include the fault tolerance and scal-

ability of distributed systems. Van Renesse is an ACM Fellow.

Nicolas Schiper is a postdoctoral asso-
ciate at the Computer Science Department
at Cornell University, USA. He obtained his
Ph.D. degree in 2009 from the University of
Lugano, Switzerland. His research lies at the
intersection of the theory and practice of
distributed systems. Nicolas Schiper is par-
ticularly interested in scalability and energy
efficiency aspects of fault-tolerance.

Fred B. Schneider is Samuel B. Eckert Pro-
fessor of Computer Science at Cornell Uni-
versity. Schneider is a fellow of AAAS (1992),
ACM (1995), IEEE (2008), a member of NAE
(2011) and a foreign member of its Nor-
wegean equivalent NKTV (2012). He was
named Professor-at-Large at the University
of Tromso (Norway) in 1996 and was awarded
a Doctor of Science honoris causa by the
University of NewCastle-upon-Tyne in 2003
for his work in computer dependability and

security. He received the 2012 IEEE Emanuel R. Piore Award.


