N SOL cloudera

EWES Ask Bigger Questions

HBase Schema Design
NoSQL Matters, Cologne, April 2013

Lars George
Director EMEA Services

About Me

Director EMEA Services @ Cloudera
- Consulting on Hadoop projects (everywhere)

Apache Committer
- HBase and Whirr

O’Reilly Author
- HBase — The Definitive Guide

- Now in Japanese!

The Definitive Guide

O'REILLY* Lars George

Contact

PERO

- lars@cloudera.com BAERREHEL
- @larsgeorge

cloudera

Ask Bigger Questions

Agenda

- HBase Architecture
- Schema Design
- Summary

cloudera

Ask Bigger Questions

cloudera

Ask Bigger Questions

HBase Architecture

HBase Tables

Row Keys Column Names, aka Column Qualifiers, aka Column Keys

U

col-A col-B col-Foo col-XYZ foobar

row-1

row-10

row-18

row-2

row-5

row-6

row-7

cloudera

Ask Bigger Questions

HBase Tables

Ascending, Lexicographically Sorted Indexes

Secondary, Per-row Index

col-A col-B col-Foo col-XYZ foobar

row-1

row-10

row-18

row-2

Primary Index

row-5

row-6

row-7
v _

cloudera

HBase Tables

Ascending, Lexicographically Sorted Indexes
Secondary, Per-row Index

e ————————————

col-A col-B col-Foo col-XYZ foobar
| row-1
e —
9 col-A col-D col-Foo2 col-XYZ col-XYZ2
()
E row-10
E" e ——
£
= 20130423 20130424 20130425 20130426 20130427
row-18
v MaxVal - ts5 MaxVal - ts4 MaxVal - ts3 MaxVal - ts2 MaxVal - ts1
row-2

cloudera

HBase Tables

col-A col-B col-Foo col-XYZ foobar

row-1

row-10

row-18 A18-vl w B18-v3 w Foo18-vl w XYZ18-v2 w foobari8-v1 w

row-2 Peter - v2 Mary - v1
Bob - v1 Cells

row-5

row-6

row-7

Coordinates for a Cell: Row Key = Column Name =» Version

cloudera

HBase Tables

Column Family 1 Column Family 2

cf1:col-A cf1:col-B cf2:col-Foo cf2:col-XYZ cf2:foobar

row-1

Region 1 row-10

row-18 A18-vl w B18-v3 w Foo18-v1 w XYZ18-v2 w foobari8-vi w

row-2

Region 2 row-5

row-6

row-7

Physical Coordinates for a Cell: Region Directory = Column Family Directory
= Row Key = Column Family Name = Column Qualifier = Version

cloudera

HBase Tables

Separate Directories

Column Family 1 / \\ Column Family 2
WA

Region 1

XYZ18 - v2 foobar18 - v1

Region 2

Physical Coordinates for a Cell: Region Directory = Column Family Directory
= Row Key = Column Family Name = Column Qualifier = Version

cloudera

Ask Bigger Questions

HBase Tables and Regions

- Table is made up of any number if regions

- Region is specified by its startKey and endKey
- Empty table: (Table, NULL, NULL)
- Two-region table: (Table, NULL, “com.cloudera.www”) and
(Table, “com.cloudera.www”, NULL)
- Each region may live on a different node and is made

up of several HDFS files and blocks, each of which is
replicated by Hadoop

cloudera

Ask Bigger Questions

Distribution

Region Servers - Physical Layout

p
Rows g Region Server 1 N\ (Region Server 2 b Region Server 3
A > Keys: [T-2)
Keys: [I - M
. ys:[I- M)
2 i
>
= | H > Kevs:
O eys: [F-1)
(@]
o
9 i
2 Keys: [A - C)
A i
Q Keys: [M -T)
»| Keys:[C-F)
Z

cloudera

HBase Tables

- Tables are sorted by Row in lexicographical order

- Table schema only defines its column families
- Each family consists of any number of columns
- Each column consists of any number of versions
« Columns only exist when inserted, NULLs are free
- Columns within a family are sorted and stored together

- Everything except table names are byte[]

(Table, Row, Family:Column, Timestamp) -> Value

cloudera

Ask Bigger Questions

HBase Architecture

4)
HBase API
@ N ([RegionServers)
Master HFile Memstore
Write-Ahead Log
\ /. \\ Y

—

l HDFS | ' ZooKeeper l

cloudegg

Ask Bigger Ques

HBase Architecture (cont.)

- HBase uses HDFS (or similar) as its reliable storage
layer

- Handles checksums, replication, failover
- Native Java API, Gateway for REST, Thrift, Avro
- Master manages cluster
- RegionServer manage data

- ZooKeeper is used the “neural network”
- Crucial for HBase
- Bootstraps and coordinates cluster

cloudera

Ask Bigger Questions

HBase Architecture (cont.)

- Based on Log-Structured Merge-Trees (LSM-Trees)
- Inserts are done in write-ahead log first

- Data is stored in memory (MemStores) and flushed to
disk on regular intervals or based on size

- Small flushes are merged in the background to keep
number of files small (Compactions)

- Reads read memory stores first and then disk based
files second

- Deletes are handled with “tombstone” markers
- Atomicity on row level no matter how many columns

cloudera

Ask Bigger Questions

Auto Sharding and Distribution

- Unit of scalability in HBase is the Region

- Sorted, contiguous range of rows

- Spread “randomly” across RegionServer

- Moved around for load balancing and failover

- Split automatically or manually to scale with growing
data

- Capacity is solely a factor of cluster nodes vs. regions
per node

cloudera

Ask Bigger Questions

Column Family vs. Column

- Use only a few column families

- Causes many files that need to stay open per region plus
class overhead per family

- Might trigger “compaction storms”
- Best used when logical separation between data and
meta columns

- Sorting per family can be used to convey application
logic or access pattern

cloudera

Ask Bigger Question

cloudera

Ask Bigger Questions

Schema Design

-

‘/// 5 ,
mvn-n"

TR
il gy e / '

Key Cardinality

Key
I
I |
KeyValue Row Column Famil Column Qualifier i Value
Skip Rows v X X X X
Skip Store Files v v X v X
Filter Compatible v v v v v

<r Performance

cloudera

Ask Bigger Questions

Key Cardinality

- The best performance is gained from using row keys
- Time range bound reads can skip store files

- So can Bloom Filters

- Selecting column families reduces the amount of data
to be scanned

- Pure value based filtering is a full table scan
- Filters often are too, but reduce network traffic

cloudera

Ask Bigger Questions

Fold, Store, and Shift

oftel | oft:c2 | cfoict | cfo:c2 cf1:c1 cf1:c2 cf1: cf2:c1 cf2:c2 cf2:
M| O m]]
r2 O B—BN]
r3 [y EI('> I:I/D D\-
& O O L "=
r6 [] i ;
G Store @

r1:cfl :cl1:t1 : <value> \x00 r1:cf1:cl1:11 : <value> r3 :cf2 : c1:13 : <value>

r2 :cf1:c2:t1 : <value> r3:cf2 :c1:t2 : <value>
r1:cfl : c1-<value>: t1 : \x00 ' 4 :ofl :c2 : H : <value> _
r1-<value> : cf1 :c1:t1 : \x00 = r5:cfl icl itl i<value>| |r4:cf2:c2:t : <value>

| I ré : cfl : c2 : t2 : <value> r5:cf2 :c1:t1 : <value>
I _ ré : cf2 : c2 : 11 : <value>

= Same Storage Requirements

StoreFile "cf1/1234" StoreFile "cf2/5678"

cloudera

Fold, Store, and Shift

- Logical layout does not match physical one

- All values are stored with the full coordinates,

including: Row Key, Column Family, Column Qualifier,
and Timestamp

- Folds columns into “row per column”
- NULLs are cost free as nothing is stored

- Versions are multiple “rows” in folded table

cloudera

Ask Bigger Questions

Key/Table Design

- Crucial to gain best performance

- Why do | need to know? Well, you also need to know that
RDBMS is only working well when columns are indexed and
qguery plan is OK

- Absence of secondary indexes forces use of row key
or column name sorting
- Transfer multiple indexes into one

- Generate large table -> Good since fits architecture and
spreads across cluster

cloudera

Ask Bigger Questions

DDI

- Stands for Denormalization, Duplication and
Intelligent Keys

Needed to overcome shortcomings of architecture

Denormalization -> Replacement for JOINs

Duplication -> Design for reads

Intelligent Keys -> Implement indexing and sorting,
optimize reads

cloudera

Ask Bigger Questions

Pre-materialize Everything

- Achieve one read per customer request if possible

- Otherwise keep at lowest number

- Reads between 10ms (cache miss) and 1ms (cache
hit)

- Use MapReduce to compute exacts in batch

- Store and merge updates live

- Use incrementColumnValue

Motto: “Design for Reads”

cloudera

Ask Bigger Questions

Tall-Narrow vs. Flat-Wide Tables

- Rows do not split
- Might end up with one row per region

- Same storage footprint
- Put more details into the row key

- Sometimes dummy column only
- Make use of partial key scans

- Tall with Scans, Wide with Gets

- Atomicity only on row level

- Example: Large graphs, stored as adjacency matrix

cloudera

Ask Bigger Questions

Example: Mail Inbox

<userId> : <colfam> : <messageId> : <timestamp> : <email-message>

12345 : data : 5fc38314-e290-ae5da5£fc375d : 1307097848 : "Hi Lars, ..."
12345 : data : 725aae5f-d72e-£f90£3£070419 : 1307099848 : "Welcome, and ..."
12345 : data : cc6775b3-f249-c6dd2bla7467 : 1307101848 : "To Whom It ..."
12345 : data : dcbee495-6d5e-6ed48124632c : 1307103848 : "Hi, how are ..."

or
12345-5fc38314-e290-ae5da5£fc375d : data : : 1307097848 : "Hi Lars, ..."
12345-725aae5f-d72e-£90£3£070419 : data : : 1307099848 : "Welcome, and ..."
12345-cc6775b3-£249-c6dd2bla7467 : data : : 1307101848 : "To Whom It ..."
12345-dcbeed95-6d5e-6ed48124632c : data : : 1307103848 : "Hi, how are ..."

= Same Storage Requirements

cloudera

Ask Bigger Questions

Partial Key Scans

Key

<userId> Scan over all messages
for a given user ID

<userId>-<date> Scan over all messages
on a given date for the
given user ID

<userId>-<date>-<messageId> Scan over all parts of a
message for a given user
ID and date

<userId>-<date>-<messageId>-<attachmentId> Scan over all

attachments of a

message for a given user
ID and date

cloudera

Sequential Keys

<timestamp><more key>: {CF: {CQ: {TS : Val}}}

- Hotspotting on Regions: bad!
- Instead do one of the following:
- Salting
- Prefix <timestamp> with distributed value
- Binning or bucketing rows across regions
- Key field swap/promotion
- Move <more key> before the timestamp (see OpenTSDB later)

« Randomization
- Move <timestamp> out of key

cloudera

Ask Bigger Questions

Salting

Prefix row keys to gain spread
Use well known or numbered prefixes
Use modulo to spread across servers

Enforce common data stay close to each other for subsequent
scanning or MapReduce processing

0 rowkeyl, 1 rowkeyZ2, 2 rowkey3
0 rowkey4, 1 rowkeyb5, 2 rowkeyb6

Sorted by prefix first

0 rowkeyl
0 rowkey4
1 rowkey?Z2
1 rowkeyb

cloudera

Ask Bigger Questions

Hashing vs. Sequential Keys

- Uses hashes for best spread

- Use for example MD5 to be able to recreate key
- Key = MD5(customeriD)

- Counter productive for range scans

- Use sequential keys for locality

- Makes use of block caches

- May tax one server overly, may be avoided by salting or
splitting regions while keeping them small

cloudera

Ask Bigger Questions

Key Design

Performance

Random

cloudera

Seauential Salted Promoted

Ask Bigger Questions

Key Designh Summary

- Based on access pattern, either use sequential or
random keys

- Often a combination of both is needed

- Overcome architectural limitations

- Neither is necessarily bad
- Use bulk import for sequential keys and reads
- Random keys are good for random access patterns

cloudera

Ask Bigger Question

Example: Facebook Insights

> 20B Events per Day

1M Counter Updates per Second
- 100 Nodes Cluster
- 10K OPS per Node

- "Like” button triggers AJAX request

Event written to log file
30mins current for website owner

Web =¥ Scribe =¥ Ptail =% Puma =» HBase

cloudera

Ask Bigger Questions

HBase Counters

- Store counters per Domain and per URL

- Leverage HBase increment (atomic read-modify-write)
feature

- Each row is one specific Domain or URL
- The columns are the counters for specific metrics

- Column families are used to group counters by time
range

- Set time-to-live on CF level to auto-expire counters by age
to save space, e.g., 2 weeks on “Daily Counters” family

cloudera

Ask Bigger Questions

Key Design

- Reversed Domains
- Examples: “com.cloudera.www”, “com.cloudera.blog”
- Helps keeping pages per site close, as HBase efficiently scans blocks
of sorted keys
- Domain Row Key =
MD5(Reversed Domain) + Reversed Domain

- Leading MD5 hash spreads keys randomly across all regions for
load balancing reasons

« Only hashing the domain groups per site (and per subdomain if
needed)

* URL Row Key =
MD5(Reversed Domain) + Reversed Domain + URL ID
- Unique ID per URL already available, make use of it

N«

cloudera

Ask Bigger Que

Insights Schema

Row Key: Domain Row Key

Columns:
Hourly Counters CF Daily Counters CF Lifetime Counters CF
6pm | 6pm | 6pm | 7pm 1/1 171 | 2/1
Total | Male | US |/1 Total Male | US Total | Male |Female| US
100 | 50 92 45 1000 320 | 670 | 990 10000 | 6780 | 3220 | 9900

Row Key: URL Row Key
Columns:

Hourly Counters CF Daily Counters CF Lifetime Counters CF
6pm | 6pm | 6pm | 7pm 1| 21
Total | Male | US 1/1 Total Male | US Total | Male |Female| US
10 5 9 4 100 20 70 99 100 8 92 100

cloudera

cloudera

Ask Bigger Questions

Summary

Summary

- Design for Use-Case
- Read, Write, or Both?

- Avoid Hotspotting
- Consider using IDs instead of full text
- Leverage Column Family to HFile relation

- Shift details to appropriate position
- Composite Keys

« Column Qualifiers

cloudera

Ask Bigger Questions

Summary (cont.)

- Schema design is a combination of
- Designing the keys (row and column)
- Segregate data into column families
- Choose compression and block sizes

- Similar techniques are needed to scale most systems
- Add indexes, partition data, consistent hashing

- Denormalization, Duplication, and Intelligent Keys
(DDI)

cloudera

Ask Bigger Question

dera

k Bigger Questions:

cloudera

Ask Bigger Questions

