
0018-9162/99/$10.00 © 1999 IEEE May 1999 1

Computing Practices

Wide-Area
Computing: 
Resource Sharing 
on a Large Scale

C
onsider almost any computing resource
today—whether hardware, software, or
data—and it will invariably be net-
worked. Networking, especially wide-
area networking, has created dramatic

new possibilities for resource sharing. Cooperating
contractors want selected access to each other’s enter-
prise systems. Researchers in geographically distant
universities need to pool and analyze data from multi-
site experiments. Legacy codes on different comput-
ing platforms must exchange information to support
data mining and other integrated applications.

These new possibilities depend on the ability to
manage shared resources. But the sheer complexity of
networked environments can turn this management
problem into a nightmare. How do you share and
manage resources yet maintain the autonomy of mul-
tiple administrative domains, hide the differences
between incompatible computer architectures, com-
municate consistently as machines and network con-
nections are lost, and respect overlapping security
policies? The usual approach to these problems has
been to deal with each situation individually. Piecemeal
solutions are cobbled together from scripts, sockets,
and various networking tools. If all goes well, a sophis-
ticated programmer can build and maintain the appli-
cation, but even then the implementation tends to be
brittle and limited.

Resource management is traditionally an operating
system problem, but large-scale collections of
resources transcend classic operating system bound-
aries. What is needed is a wide-area operating system
that can abstract over a complex set of resources and

provide a high-level way to share and manage them
over the network. To be effective, such a system must
address the challenges posed by real end-user appli-
cations (see the sidebar “Challenges for a Wide Area
Operating System”). Scalability, security, and fault tol-
erance are just a few of the characteristics a viable solu-
tion must have.

Five years ago, we set out to design and build a
wide-area operating system that would encompass all
these challenges, allowing multiple organizations with
diverse platforms to share and combine their resources.
Our system, Legion (http://legion.virginia.edu), is now
operational on hundreds of hosts across nine US sites,
including the two NSF supercomputer centers (San
Diego Supercomputer Center and National Center for
Supercomputing Applications), two DoD supercom-
puter centers (Naval Oceanographic Office and Army

Co
m

pu
tin

g 
Pr

ac
tic

es

Computing over wide-area networks has been largely ad hoc, but as needs

increase, piecemeal solutions no longer make sense. Legion, a network-level

operating system was designed from scratch to target wide-area computing

demands.

Andrew
Grimshaw
Adam Ferrari
Frederick
Knabe
Marty
Humphrey
University of
Virginia



2 Computer

Research Laboratory), NASA’s Aeronautical Research
Center, and several universities. Users have ported a
range of scientific applications to Legion in areas such
as molecular biology, materials science, ocean and
atmospheric science, electrical engineering, and com-
puter science.

Legion is essentially a conduit between the end user
and widely distributed collections of resources. Like a
traditional operating system, it supports services such
as resource management and a distributed file system.
This operating system-style interface leverages appli-
cation programmer experience and simplifies porting
legacy applications to the Legion platform. However,
unlike typical operating systems, Legion is layered on
top of existing software services. It uses the existing
operating systems, resource management tools, and
security mechanisms at host sites to implement higher-
level system-wide services. Because of this middleware

approach, Legion is able to reuse local services, and
sites can retain familiar local software interfaces for
applications that are not wide-area. 

Legion is a component-based system: Distributed
application components are represented as indepen-
dent, active objects. This approach greatly simplifies
the development of distributed applications and tools.
Instead of facing the complexity of a wide range of
distributed resources and service interfaces, the pro-
grammer works with the simple, uniform abstraction
of distributed objects. Legion also supports a high level
of site-autonomy. Local sites can select and configure
the components that represent local resources and ser-
vices in any way they see fit, retaining complete con-
trol over local access control policies, resource quota
mechanisms, and so on. Legion’s inherent flexibility
is its greatest strength, and its most important defin-
ing characteristic.

Application
class

(visualization)

Application
class

(simulation)
Application

class
(data mining)

Host
Class

Manager

Scheduler

Host
Class

Manager

Vault
Class

Manager

Host
Class

Manager
Gather

resource 
info

Schedule
instances

Legion

Report
faults

Host Host Host Host Vault Vault Host Host

Glunix HPSS Unix FS Fork/execLoad
leveler

HPSS

NOW

Cray T90

SP2

SDSCBerkeley UVa U Michigan
Centurion

SP2

Detect
faults

Figure 1. How the Legion wide-area operating system works. Legion Host and Vault proxy objects provide a uniform interface to heterogeneous
collections of processing and storage resources. These resource proxy objects are managed by Class Manager objects. Class Managers detect and report
resource faults, for example. Scheduler objects gather information about the system state; Class Managers use these Schedulers to select and access
required resources. All these system components—resource objects, managers, schedulers, and application objects—are addressable in a single, 
system-wide, uniform object space.



HOW LEGION WORKS
With components that must interoperate in wide-

area heterogeneous environments, Legion’s funda-
mental object model resembles the Common Object
Request Broker Architecture (CORBA). Programmers
describe object interfaces in an interface description
language (IDL) and then compile and link them to
implementations in programming languages such as
C++, Java, or Fortran. All system elements are objects
and can communicate with one another regardless of
location, heterogeneity, or implementation details.
Within this object-based framework, Legion provides
the services of a distributed operating system. Figure
1 shows how Legion works to meet a range of
resource-sharing demands.

The easiest way to understand how Legion works
is to consider how it handles classic operating system
tasks, which we consider in turn.

Representing and managing resources
As the figure shows, local sites use Host and Vault

objects to represent processors and storage, respec-
tively.2 Using objects to represent resources has two
primary benefits:

• Objects define a simple, consistent interface to
Legion’s resources. Hosts provide the uniform

interface for creating objects (tasks); Vaults pro-
vide the uniform interface for allocating persistent
storage. These interfaces provide a consistent view
of system resources, even though local resource
access interfaces differ significantly in practice. 

• The resource object model provides a tremendous
degree of site autonomy. Applications (acting as
resource clients) use the generic object interfaces
for the resources they require. Resource providers
can employ any desired implementation of the
resource objects. 

The second benefit is particularly significant. For
example, if system administrators at a site want to
enforce a specialized access control policy for their
local hosts, they can extend or replace the basic Host
implementation to enforce that policy. Similarly, some
of the hosts in Legion systems may require access
through a local queue management system such as
Genias Software’s Codine (http://www.genias.de) or
IBM’s LoadLeveler (http://www.rs6000.ibm.com/
software/sp_products/loadlev.html). In these cases,
resource providers simply use extended, queue-aware
Host objects. Likewise, if a resource provider makes
storage in a local file system available to Legion, yet
wants to continue using local Unix-based accounting
and quota tools, he can use a Vault object implemen-

May 1998 3

Challenges for a Wide-Area 
Operating System

At Boeing Company, designers use sim-
ulation to make ever more complex air-
frames at a manageable cost. Pratt & Whit-
ney, which designs and supplies jet engines
to Boeing, also relies heavily on simulation.
When Boeing’s engineers simulate an air-
frame’s behavior, they need to know how
the engine coupled to that airframe will
perform under various conditions. How-
ever, Pratt & Whitney cannot release its
proprietary engine simulations because of
the significant intellectual property they
encode. This requires an unwieldy infor-
mation exchange process, in which Boeing
engineers ask Pratt & Whitney engineers
to run their simulation at specified data
points and then send them results by tape.
Boeing engineers then combine the infor-
mation with their own simulation data and
modify it accordingly. The process iterates.

In a completely different domain, Har-
vard Medical School researches the causes
and symptoms of multiple sclerosis. They
need to get MRI scans from multiple part-

ner institutions and to make a database of
image-processed results available to the
partners. As a first step, they want a tool
that can automatically identify pertinent
MRI scans at partner hospitals, securely
move those scans over the Internet to Har-
vard, and then process them. The partners
will provide very little administrative sup-
port for the tool.

In another medical setting, seven com-
peting Dayton, Ohio, hospitals are work-
ing together to reduce costs. By sharing
patient records and making them elec-
tronically available to emergency room
physicians, they avoid expensive and time-
consuming tests and can provide better
care more quickly. Each hospital has its
own legacy medical records system, IS per-
sonnel, and procedures that must some-
how be merged. However, each also has
databases and programs that cannot be
shared. 

Finally, climate modeling groups at San
Diego Supercomputer Center, UCLA, and
Lawrence Berkeley Laboratory want to
couple a global atmospheric circulation

model with a regional, mesoscale weather
model. The coupled models would feed
data to each other, creating more accurate
and detailed combined results. The exist-
ing regional model runs only on a Cray
T90, while the global model runs on a
Cray T3E and is being migrated to the
IBM SP. The applications need a way to
coordinate and exchange data with one
another at run time, be scheduled to run
simultaneously on separate supercomput-
ers, and be easily controlled by a researcher
at a single workstation.

These applications characterize the
spirit of wide-area computing. Some of the
requirements are unique, while others
overlap. The applications also illustrate the
following significant challenges, from
managing complexity to implementing
flexible, robust security.

Provide a high-level programming model
Complexity is the programmer’s nemesis:

A large-scale system can comprise several dif-
ferent architectures, tens of sites, hundreds
of applications, and potentially thousands



4 Computer

tation that allocates storage under the appropriate
local Unix user-id for each Legion client. 

Legion provides configurable default implementa-
tions of the basic resource objects, so resource
providers generally need not write any code to make
their resources available. However, through object
extension and replacement, Legion is flexible enough
to support new local resource interfaces and policies
as they arise.

Managing tasks and objects
Traditional operating systems must provide interfaces
for starting new tasks and controlling their execution
(suspend, resume, terminate, and so on). In Legion, the
notion of a task or process corresponds closely to the
Legion object: Objects are the active computational
entities within the system. Legion encapsulates object
management functions in the Class Manager object
type. Class Managers have three main functions:

• They support a consistent interface for object
management. The Class Manager interface in-
cludes a natural set of object (or task) manage-
ment operations, such as methods to create and
destroy objects. Each Class Manager is responsi-
ble for a set of instances, which clients control
through the Class Manager interface. Class
Managers act as a policy makers for their in-

stances. For example, an object’s Class Manager
determines which resources the object may use,
and might enforce a policy that lets instances run
only on a known set of trusted hosts.

• They actively monitor their instances. Class
Managers query the status of their instances,
detecting failures, and coordinating failure re-
sponse (see Figure 1). In this role, Class Managers
act as a distributed, agent-based fault-detection
and response mechanism within Legion.

• They support persistence. All Legion objects can
be persistent, existing arbitrarily beyond the life
of their creating program. When an object is not
in use, it can be deactivated: Its state is saved to
stable storage and its containing process is de-
allocated (to conserve resources). This notion of
object activation/deactivation is similar to tradi-
tional operating systems temporarily swapping
out a job. To make object deactivation transpar-
ent to clients, the Class Manager acts as an auto-
matic reactivation agent. If a client attempts to
invoke a method on an inactive object, the Class
Manager automatically reactivates it. Reactiva-
tion is thus as transparent as resuming swapped-
out processes in traditional systems.

Decomposing object management responsibilities
into an arbitrary number of Class Managers provides

of hosts. Reducing and managing complex-
ity is therefore critical. The object-oriented
paradigm and object-based programming
provide programmers and application
designers with encapsulation features and
tools for abstraction that reduce and com-
partmentalize complexity. We firmly believe
that object-based techniques are key to con-
structing robust, wide-area systems.

These techniques are not enough, how-
ever. Composable, high-level services must
replace low-level interfaces such as rsh and
sockets in the programmer’s toolbox.
Without such services, the complexity of
distributed programming goes up dramat-
ically, increasing both the skill set required
to build applications and the fragility of
the resulting software.

Offer a single system image
To combat the daunting number of dis-

tinct hosts and file systems, programmers
need a single system image—the abstrac-
tion of a single machine and associated
storage. For some, a “single system image”
means a single shared address space; for

others, the ability to run ps and get a list of
all processes throughout the system. We
define a single system image as a universal
name space and management infrastruc-
ture for all objects of interest to the system
and its users: files, processes, processors
(hosts), storage, users, services, and so on.
The names should be location independent
(not contain any location information) and
should be usable from anywhere in the sys-
tem. Further, as programmers use resources
to create their own objects, they should not
be forced to explicitly place objects on a
particular host or disk—the system should
handle that. Thus, the programmer or user
can specify or know an object’s location
when necessary, but if this information is
not relevant to his task, he can ignore it.

Accommodate diverse 
administrative policies

Most wide area computing requires
joining multiple organizations and admin-
istrative domains. To makes this bridging
easy, the system must accommodate a
diverse set of local use policies, access con-

trol policies, and computational cultures.
For example, a site might insist that users
authenticate via Kerberos before using its
resources, or that users sign an “accept-
able use policy” statement, or that each
day from 1:00 p.m. to 6:00 p.m. no appli-
cations can be run that consume more than
five CPU minutes. Extensibility and flexi-
bility thus become essential—users must
be able to readily extend and configure the
system to satisfy local requirements.

Manage heterogeneous resources
Resource heterogeneity is a natural part

of the distributed environment. Types of
heterogeneity include processor, data for-
mat, configuration (how much memory
and disk? which libraries are available on
a host?), and operating system. If hetero-
geneity is not managed, individual users
and programmers must deal with the com-
plexity induced by all the possible permu-
tations of hardware, operating system, and
resources, a task that can rapidly over-
whelm even the best programmers.



a natural distribution of the system’s object manage-
ment activities. Also, because Class Managers are
extensible, replaceable objects, it is easy to customize
the system’s object management mechanisms. For
example, to enable certain forms of failure resilience,
some Legion classes use replication. The specialized
Class Managers used for these object classes create
and manage replicas transparently to clients.

Naming
Naming is a basic interface issue in operating sys-

tem design. For example, operating systems typically
define a name space for identifying processes (such as
Unix PIDs), as well as a file system name space for
identifying files and directories. Legion represents all
entities—files, processors, storage devices, networks,
users, and so on—as objects. These objects are iden-
tified by a three-level naming scheme. At the lowest
level, each object is assigned an object address—a list
of network addresses for the object. An object address
might contain an IP address and port number, for
example. Because Legion objects can migrate, object
addresses change over time. Legion thus defines an
intermediate layer of location-independent names
called Legion object identifiers (LOIDs). LOIDs are
globally unique identifiers that are assigned to objects
when they are created. Because they are binary, sys-
tem-assigned names, they are not convenient for users.

To address this deficiency, Legion supports a hierar-
chical directory service, context space, which lets users
assign arbitrary Unix-like string paths to objects.

The Legion naming mechanism reduces the com-
plexity of designing distributed applications because
it provides a single global name space for all system
entities. A typical distributed environment supports
separate name spaces for files, hosts, and processes:
Legion, in contrast, supports the same global name
space for all these as well as additional entities. The
interface to this global name space is very easy to use;
at the highest level (context space) the user manipu-
lates names in the familiar form of Unix-style paths.
Furthermore, Legion’s scalable replicated binding ser-
vices make name translation automatic and efficient.1

Providing an extensible file system
Traditional operating systems typically rely on a file

system to manage and represent persistent storage.
However, Legion’s global name space and persistent
object model make a separate file system unneces-
sary—in practice, the generalized persistent object
space defined by Legion serves all the purposes of con-
ventional file systems. In Legion’s “file system,” users
see familiar elements such as paths, directories, and
universally accessible files, but they also see arbitrary
object types such as Hosts, Class Managers, and appli-
cation tasks.

May 1998 5

Grow without limits
The system must be able to add new

hosts and resources over time. If the past
has shown us anything it is that the num-
ber of interconnected computational
resources will only increase. Users and
organizations do not want arbitrary lim-
its on system size and capacity. System
architectures must therefore be scalable
and conform to the distributed systems
principle that “the amount of service
required of any single component of the
system must not grow as the system
grows.” If an architecture does not con-
form, a component whose load (requests
per second, for example) increases as the
system expands will at some point become
saturated, and performance will suffer.

Tolerate faults
Several years ago Leslie Lamport

quipped, “A distributed system is one in
which I cannot get something done be-
cause a machine I’ve never heard of is
down.” This indictment is driven by a sim-
ple fact: Without mechanisms to deal with

failure, application availability is the prod-
uct of component availability. In today’s
business climate, an unavailable applica-
tion can easily cost thousands of dollars
per minute. A wide-area system must
therefore be resilient to failure and pro-
vide a failure and recovery model and
associated services to applications devel-
opers, so that they can write robust appli-
cations. The model must include notions
of fault detection, fault propagation, and
a set of useful failure mode assumptions.

Handle multilanguage and 
legacy applications

“I don’t know what computer language
they’ll be using in a hundred years, but it
will be called Fortran” was a popular
refrain in the 1980s. Hundreds of millions
of lines of legacy code today are written in
languages as varied as Lisp, RPG, Cobol,
assembler, C/C++, Java, and (of course) For-
tran. One thing is certain: Those codes will
not be replaced overnight and we will still
want to be able to run them in distributed
environments. The implication is that there

must be a mechanism for supporting legacy
code without modification, and it must be
able to support a variety of programming
languages. A wide-area computing envi-
ronment must be language-neutral.

Implement flexible, robust security
Security includes a range of topics,

including authentication (how do I know
who you are?), access control (who can do
what to each resource?), and data integrity
(how can I make sure no one can read or
modify my data in memory, on disk, or on
the network?). Each of these issues is in
the Boeing/Pratt & Whitney example.
Clearly we must be able to provide high
levels of security, but there is more to the
problem. Security can be costly in perfor-
mance, capability restriction, and other
dimensions. Moreover, different users and
organizations want to enforce very differ-
ent policies. The challenge is to provide
each user and organization with just the
right mechanism and policy rules but still
to allow different users and organizations
to interact.



6 Computer

Because of this generality, Legion’s object space is
more flexible than conventional file systems. For
example, users can customize individual files to better
suit application-specific behaviors such as specialized
file access patterns. Consider a file that contains a two-
dimensional grid of data items. In a traditional file
interface, accessing a single grid row or column might
require multiple file operations. In Legion, users can
define an extended file type to represent the 2D file
object, with additional methods to permit row and
column access.

Enabling interprocess communication
At the lowest level, Legion objects communicate via

message passing to transmit method parameters and
results. However, applications for wide-area systems
need tools to reduce communication and to tolerate
high latencies. To address these requirements, Legion
supports macrodataflow, a variation of the traditional
remote method invocation model. 

Like other asynchronous remote method mecha-
nisms, macrodataflow permits multiple concurrent
invocations and lets users overlap remote methods and
local computation. However, unlike other remote
method protocols, macrodataflow forwards method

results directly to data-dependent receivers. For exam-
ple, if the caller does not directly use the result of a
remote method, but needs it only as a parameter for
future invocations, the caller will never receive the
result. The macrodataflow protocol avoids the unnec-
essary act of communicating the result back to the
caller, and instead forwards the message directly to
the objects where it is needed. 

Legion fully automates the macrodataflow protocol.
Clients can specify and execute program graphs of inter-
dependent remote method invocations using macro-
dataflow library interfaces, or via Legion-aware
compilers such as the Mentat Programmer Language
Compiler.2 Similarly, object developers need not be
aware of macrodataflow; Legion automatically matches
incoming method parameters from multiple sources
into complete method invocations, and forwards out-
going results directly to data-dependent recipients.

Protecting resources and applications
Wide-area operating systems must protect the secu-

rity of both local resource providers and application
users. Resource providers require that the wide-area
operating system manage local resources in accor-
dance with local policies. Application programmers

How Legion Differs from...

Common Object Request 
Broker Architecture

CORBA 3.0 defines communication
protocols, naming and binding mecha-
nisms, invocation methods, persistence,
and many other features and services
essential for an object-based architecture.1

As such, its feature set and Legion’s over-
lap in many areas.

The two architectures differ in their
underlying emphasis, however. CORBA
was initially a reaction to the software inte-
gration problem. Differences between soft-
ware components in location, vendor,
implementation language, or execution
platform made building integrated applica-
tions difficult if not impossible. CORBA
developers focused on enabling interoper-
ability, and the architecture provides a com-
mon, object-based playing field where
components can communicate and interact.

In contrast, Legion began with funda-
mental computing resources on a wide-
area network—CPU, disk, data, and so
on—and built an overarching framework
for them. It emphasizes the ability to man-

age and reason about resources. The goal
was to reconstruct a coherent computing
environment with core operating system
capabilities over a complex, heterogeneous
environment. Thus, Legion can be used
simply for its high-level operating system
services to run, schedule, and manage
legacy applications in a network, but it can
mimic the CORBA standard for integrat-
ing applications. These two aspects com-
bined give Legion its real power.

As CORBA evolves, some operating sys-
tem-type services are starting to be defined
for it. Scalability and other wide-area con-
cerns are becoming more important. It
remains to be seen how well its architec-
ture will accommodate these changes.

Globe
The Globe project2 at Vrije University

also shares many goals and attributes with
Legion. Both occupy middleware roles
(running on top of existing host operating
systems and networks), both support
implementation flexibility, both have a sin-
gle uniform object model and architecture,
and both use objects to abstract imple-
mentation details. However, the object

models of the two systems differ in many
respects. Globe objects are passive and are
physically distributed over potentially
many resources, whereas Legion objects
are active, independent entities. Because of
this difference, Legion provides a more
unified view of system components.
Whereas in Globe there is a dichotomy
between objects and processes, in Legion
objects are themselves the units of compu-
tation, providing the basis for distribution,
scheduling, and resource management.

Globe and Legion both provide a plat-
form for constructing applications based
on interoperable components. But Legion
differs significantly in also providing an
integrated infrastructure for resource man-
agement. This hallmark of a wide-area
operating system is essential for large-scale
resource sharing.

Globus
The Globus project3 at Argonne National

Laboratory and the University of Southern
California has the same base of target envi-
ronments, technical objectives, and target
end users as Legion, and shares some of its
design features. However, Globus and



must satisfy the security requirements of their appli-
cations. 

Legion’s security mechanisms are an integral part
of its object architecture. The basic Legion security
service is user-selectable data privacy and integrity
within the Legion message-passing layer. Legion lets
messages be fully encrypted for privacy, digested and
signed for integrity checking, or sent in the clear if low
performance overhead is an application priority.
Cryptographic services in Legion are based on the RSA
public key system (http://www.rsa.com). To protect
against certain kinds of public key tampering, objects
encode their RSA public keys directly into their
LOIDs. Simply by knowing an object’s LOID, a client
can communicate securely with that object.

In any operating system, access control and resource
protection are central issues. In Legion, all resources
are represented by objects, so access control and
resource protection are specified entirely at the object
level. Invoked objects enforce access control
autonomously invocation by invocation, using a
mandatory internal method called MayI. When a
method invocation arrives at an object, it is first
processed by the object’s MayI method, which can
enforce an arbitrary access control policy. Typically,

MayI makes access control decisions on the basis of
credentials passed along with method parameters.
Credentials consist of a free-form set of rights signed
by a responsible client. The default MayI implemen-
tation is based on user-configurable access control lists,
including the notion of groups.

In addition to access control mechanisms, operating
systems must define mechanisms for user identity and
authentication. Users (like all other Legion entities)
are represented by objects, which are assigned unique
LOIDs. The user’s LOID contains his public key, but
the user keeps his private key safe through arbitrary
local means, such as a smart card. Trusted Legion pro-
grams executed by the user (the Legion login shell, for
example) rely on the user’s private key to sign appro-
priate credentials for outgoing methods. These cre-
dentials form the basis for authenticating the user and
are typically used in conjunction with per-object access
control lists to enforce user access control. 

APPLICATIONS OF LEGION
Legion’s services can accommodate a variety of

domains and platforms. Two current applications
illustrate its flexibility in supporting distributed enter-
prise computing.

May 1998 7

Legion have fundamentally different high-
level objectives. Globus provides a basic set
of services that let users write applications
for a wide-area environment. Working
components become part of a composite
distributed computing toolkit. Legion, in
contrast, strives to reduce complexity and
to provide the programmer with a single
view of the underlying resources, so it
builds higher-level system functionality on
top of a single unified object model.

The Globus approach has several strong
points. One is that it takes great advantage
of code reuse, and builds on user knowl-
edge of familiar tools and work environ-
ments. This approach also has several
drawbacks. As the number of services
grows, the lack of a common programming
interface and model becomes a significant
burden. By providing a common object
programming model for all services, Legion
permits users and tool builders to combine
the many services available in the wide-area
operating system: schedulers, I/O services,
application components, and so on. For
example, users can run the same access
control tools to configure security for files
and for hosts. We believe the long-term

advantages of basing a system on a cohe-
sive, comprehensive, and extensible design
outweigh the short-term advantages of evo-
lutionary composition of existing services.

The Web 
The Web is not a single entity whose

characteristics can be isolated and ana-
lyzed. Rather it is a broad category of
applications, protocols, and libraries
focused on content delivery to end-users
running browsers. Advances in Web
browser interfaces and functionality have
driven the Web revolution, transforming
it from an elitist tool to an omnipresent
phenomenon. Given that the Web is most
users’ primary experience of distributed
computing, it is important to define its role
in wide-area computing.

The Web in its current form clearly does
not constitute a wide-area operating sys-
tem. Basic operating system issues, such as
resource management and task scheduling,
are simply part of the Web’s structure. This
is not an indictment of the Web, but a
recognition of its true strength as a remote
access medium for distributed content and
a ubiquitous interface technology for

accessing distributed applications. As such,
the Web is the perfect front-end, or inter-
face, to applications running in wide-area
operating systems such as Legion.
Application interfaces can be written in
Java, or they may use HTML and the
Common Gateway Interface (CGI). They
can communicate with back-end applica-
tions using either native socket protocols,
HTTP, or higher-level interfaces provided
by the wide-area operating system. Viewed
this way, the Web and wide-area operating
systems such as Legion are complementary.
For many users, the Web provides the most
natural window into the Legion universe.

References
1. “The CORBA Connection,” Comm.

ACM, Vol. 48, No. 11, Nov. 1998, special
issue on CORBA, K. Seetharaman, ed.

2. M. Van Steen, P. Homburg, and A. Tanen-
baum, “Globe: A Wide-Area Distributed
System,” IEEE Concurrency, Vol. 7, No.
1, Jan. 1999, pp. 70-78.

3. I. Foster and C. Kesselman, “Globus: A
Metacomputing Infrastructure Toolkit,”
Int’l J. Supercomputer Applications, Vol.
11, No. 2, 1997, pp. 115-128.



8 Computer

MRI data collection
The MRI data collection system in development for

Harvard Medical School (see first example in the side-
bar “Challenges for a Wide-Area Operating System”)
is a good illustration of an application structure that
fits well with Legion’s services. The components of the
MRI data collection application run on central servers
at Harvard and on front-end computers at the MRI
centers. Figure 2 shows the architecture. Each leaf
node has an MRI collection object (blue) that scans
the local disk for specially tagged MRI images that the
scanner has dumped. The MRI collection object copies
these images into its persistent data space so that they
will not be deleted when the scanner’s “dumping direc-
tory” is automatically cleaned up. Periodically the
MRI collection object calls the image processing object
at Harvard (red) to upload the data in encrypted form,
authenticating itself by including appropriately signed
certificates in the method invocations. When it receives
a complete batch of scans, the image processing object
starts an image-processing pipeline, which consists of
objects automatically scheduled onto local compute
servers. The final stage of the processing pipeline
inserts the results in the project’s image database.

When a leaf node is rebooted, the node’s Host object
(yellow) starts automatically and registers with its
manager (green) in the larger Legion net. The Class
Manager object (pink) for the MRI collection com-
ponent detects, via polling of the green Host object
Class Manager, that the node is up and requests a
restart of the blue MRI collection object for that node.
The yellow Host object on the node handles the
request, detecting simultaneously if the MRI collec-
tion object has been upgraded and, if so, download-
ing the new executable automatically. As it comes up
the MRI collection object recovers its state, which may
include as-yet-untransmitted MRI scans.

Both the Host object and MRI collection object
Class Managers have replicated persistent state. If the

Class Manager goes down, its own higher-order Class
Manager will detect the loss and restart it using the
replica. This detection and restart behavior recurses
up a tree of metamanagers (typically only one or two
levels) to the root Legion manager object, which has
a hot spare.

The Class Manager, Host, and other objects in the
system are all configured with strict access control.
Calls to various objects must present credentials to
gain authorization. The MRI collection application
and its Legion infrastructure are owned and accessi-
ble only by a small set of Legion users at Harvard.
These users can centrally monitor and configure the
system using Legion tools that provide views of all the
hosts, objects, etc., that are running or down.

Climate modeling
Climate modeling has progressed beyond basic

atmospheric simulations to include multiple aspects
of the Earth system, such as full-depth ocean models,
high-resolution land-surface models, sea ice models,
and chemistry models. Typically, these models come
from different research groups at a variety of institu-
tions, are written in different languages, and require
different resources. As described in the second exam-
ple in the sidebar “Challenges for a Wide-Area
Operating System,” coupled applications composed
from existing models require the ability to coordinate
existing components and to manage combined
resources.

Legion’s ability to combine and add value to exist-
ing components to create more complex applications
fits nicely with this application. To construct the cou-
pled climate model system, developers use the existing
simulations as implementations for two new Legion
object types: Global Model and Mesoscale Model. In
doing so, they modify the simulations to enable link-
age to a Legion object interface (described in IDL),
and modify the I/O calls in the models to use Legion

MRI
partner

MRI
partner

MRI
partner

Image
processing

object

Partner
host

manager

MRI
collection
manager

Partner
host

object

MRI
collection

object

Encrypted
MRI

images

Harvard MRI partner
(exploded view)

Poll for
new  hosts

Monitor
partner

host objects

Start and
monitor MRI

collection
objects

Download
binary and
spawn

Scanner

Dump
directory

Read

Write

Figure 2. The MRI
data collection sys-
tem in development
for Harvard Medical
School. The compo-
nents of the MRI data
collection applica-
tion run on central
servers at Harvard
and on front-end
computers at the MRI
centers. 



file objects in place of the local file system. Each new
model object supports a method to request the exe-
cution of a simulation time interval. Coordination and
coupling of the model objects is accomplished through
the use of a Legion Coupler object. This object also
transforms data from each model into the format
required by the other (for example, the models employ
geographic grids that differ by an order of magnitude
in resolution).

Legion also satisfies this application’s requirements
for managing resources. For example, application
developers can configure the Class Manager for the
Global Model object to know that a Cray T3E is
required for this object type. When the model becomes
available on the IBM SP, they can reconfigure the Class
Manager with a single command to account for this
new resource selection possibility. When a users wants
to run the complete coupled simulation, a standard
Legion component, the Scheduler object, coordinates
the acquisition of all needed resources (such as a T3E
or SP to run the global model, a T90 to run the
mesoscale model, and a workstation to host the
Coupler object). Regardless of the resources selected,
Legion automatically takes care of installing the
needed application components at the target sites, and
it uses the appropriate interfaces for the local site’s
task and storage allocation.

We are continuing to develop higher-level ser-
vices in Legion as we acquire more infor-
mation from applications. For example,

broad classes of applications can profit from similar
fault-response techniques. To address this need, we
are designing drop-in fault-tolerance modules based
on the existing detection and reporting infrastructure.
We also plan to develop new application tools, such as
an integrated Legion debugger, and port application
toolkits such as Netsolve (http://www.cs.utk.edu/
netsolve). These efforts are guided by our close col-
laborations with an expanding set of applications
groups, such as the Harvard Medical School and the
climate modeling groups mentioned earlier. Finally,
we are actively engaged in commercializing the Legion
platform for use in Internet and enterprise settings.
For more information, visit the Legion site (http://
legion.virginia.edu). ❖

Acknowledgments
We thank Charles Guttmann of the Department of

Radiology, Harvard Medical School, for the MRI
example, and Greg Follen of NASA’s Lewis Research
Center for briefing us on Boeing and Pratt & Whitney.
We also thank Sarah Wells for her assistance.

References
1. A. Grimshaw et al., “Architectural Support for Extensi-

bility and Autonomy in Wide-Area Distributed Object
Systems,” Tech. Report CS-98-12, Computer Science
Dept., Univ. of Virginia, Charlottesville, Va., 1998.

2. A. Grimshaw, “Easy-to-Use Object-Oriented Parallel
Processing with Mentat,” Computer, May 1993, pp. 39-
51.

Andrew Grimshaw is an associate professor of com-
puter science at the University of Virginia, where his
research interests include metasystems, high-perfor-
mance parallel computing, heterogeneous parallel
computing, compilers for parallel systems, and oper-
ating systems. He is the chief designer and architect
of Mentat and Legion. He received a PhD in computer
science from the University of Illinois at Urbana-
Champaign.

Adam Ferrari is a research scientist with the Legion
project in the Department of Computer Science at the
University of Virginia. His research interests include
high-performance distributed computing, operating
systems, metacomputing, and computer security. He
received an MS from Emory University and a PhD
from the University of Virginia, both in computer sci-
ence. He is a member of the IEEE Computer Society
and the ACM.

Frederick Knabe is a senior research scientist in the
Department of Computer Science at the University of
Virginia. His research interests include wide-area com-
puting, computer security, and software risks. He
received a PhD in computer science from Carnegie
Mellon University.

Marty Humphrey is a research assistant professor of
computer science at the University of Virginia. His
research interests include real-time operating systems,
real-time scheduling, distributed computing, and
metacomputing. He received a PhD in computer sci-
ence from the University of Massachusetts and is a
member of the IEEE.

Contact the authors at {grimshaw, ferrari, knabe,
humphrey}@virginia.edu.

May 1998 9



10 Computer

XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX



May 1998 11

XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX



12 Computer

XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXX


