
The Core Legion Object Model

Mike Lewis and Andrew Grjmshaw

{mlewis, grimshaw} @Virginia.edu
Department of Computer Science

University of Virginia
Charlottesville, VA 22903

Abstract

The Legion project at the University of Virginia is an
architecture for designing and building system services
that provide the illusion of a single virtual machine to
users, U virtual machine that provides secure shared object
and shared name spaces, application adjustable fault-tol-
erance, improved response time, and greater throughput.
Legion targets wide area assemblies of workstations,
supercomputers, and parallel supercomputers. Legion
tackles problems not solved by existing workstation based
parallel processing tools; the system will enable fault-tol-
erance, wide area parallel processing, inter-operability,
heterogeneity, a single global name space, protection,
security, eficient scheduling, and comprehensive resource
management.

This paper describes the core Legion object model,
which speciJies the composition and functionality of
Legion's core objects-those objects that cooperate to cre-
ate, locate, manage, and remove objects in the Legion sys-
tem. The object model facilitates a Jlexible extensible
implementation, provides a single global name space,
grants site autonomy to participating organizations, and
scales to millions of sites and trillions of objects.

1. Introduction

The next several years will see the widespread introduc-
tion and use of gigabit wide area and local area networks.
These networks have the potential to transform the way
people compute, and more importantly, the way they inter-

act and coillaborate with one another. The increase in band-
width wily enable the construction of wide area virtual
computers, or metasystems. However, just connecting
computers together is insufficient. Without easy-to-use and
robust software to simp1i:fy the environment, the network
will be too complex for most users.

The Legion project at the University of Virginia is an
architecture for designing and building system services that
provide the illusion of a single virtual machine to users, a
virtual machine that provides secure shared object and
shared name spaces, application adjustable fault-tolerance,
improved response time, and greater throughput. Legion
tackles problems not solved by existing workstation based
parallel processing tools; the system will enable fault-toler-
ance, wide area parallel processing, inter-operability, heter-
ogeneity, a global name space, protection, security,
efficient scheduling, and comprehensive resource manage-
ment.

Legion will consist of workstations, vector supercom-
puters, and parallel supercomputers connected by local
area and wide area networks. The total computation power
of such an assembly of rnachines approaches a petaflop,
but so far this enormouis potential is unrealized. The
machines are currently tied together in a loose confedera-
tion of shared communication resources used primarily to
support electronic mail, file transfer, and remote login.
However, the resources could be used to provide far more
than just communication services; they have the potential
to provide a single seamless computational environment in
which processor cycles, communication channels, and data
are all shared, and in which the workstation across the con-
tinent is no lless a resource than the one down the hall.

~~~~ ~ 

This work is partially funded by NSF grants ASC-9201822 and CDA-8922545-011, and ARPA grant J-FBI-93-116. - Many peoplc have contributed to the design of the Legion core. The other current members of the Ixgion team include professors wil- 
liam A. Wulf, James C. French, Paul E Reynolds, Jr., and Alfred C. Weaver, research associate Charles Viles, research scientist Mark 
Hyett, and graduate students Adam Fermi, John Karpovich, Darrell Kienzle, Anh Nguyen-Tuong, and Chenxi Wang. 

1082-8907/96 $5.00 0 1996 IEEE 
Proceedings of HPDC-5 '96 

55 1 

mailto:Virginia.edu


We envision a system in which a user sits at a Legion 
workstation and has the illusion of a single very powerful 
computer. When the user invokes an application on a data 
set, it is Legion’s responsibility to transparently schedule 
application components on processors, manage data trans- 
fer and coercion, and provide communication and synchro- 
nization. System boundaries, data location, and faults will 
be invisible. 

2. Objectives 

From our Legion vision we have distilled ten design 
objectives that are key to the success of the project-site 
autonomy, an extensible core, a scalable architecture, an 
easy-to-use and seamless computational environment, high 
performance via parallelism, a single global name space, 
security for both users and resource providers, manage- 
ment and exploitation of resource heterogeneity, multi-lan- 
guage support and inter-operability, and fault tolerance. 
These ten objectives are discussed at length in a companion 
paper in these proceedings [8]; four of the objectives are 
particularly relevent to the design of the core and are 
described below. 

Site autonomy: Legion will not be a monolithic system. 
Legion will comprise diverse resources owned and con- 
trolled by an array of different organizations. These organi- 
zations, quite properly, insist on having control over their 
own resources by specifying how much of a resource can 
be used, when it can be used, and who may and may not 
use the resource. 

Extensible core: We cannot know the future or all of the 
many and varied needs of users. Therefore, mechanism and 
policy must be realized via extensible, replaceable, compo- 
nents. This will permit Legion to evolve over time and will 
allow users to construct their own mechanisms and policies 
to meet specific needs. 

Scalable architecture: Because Legion will consist of 
millions of hosts, it must use a scalable software architec- 
ture. This implies that there must be no centralized struc- 
tures, and that the system must be totally distributed. 

Single global name space: One of the most significant 
obstacles to wide area parallel processing is the lack of a 
single name space for data and resource access. The exist- 
ing multitude of disjoint name spaces makes writing appli- 
cations that span sites extremely difficult. 

In addition to the ten objectives, three constraints influ- 
ence our design-we cannot replace host operating sys- 
tems, we cannot require privileged access to participating 
hosts, and we cannot legislate changes to the interconnec- 
tion networks. Operating system replacement would 
require organizations to rewrite many of their applications 
and to retrain many of their users, possibly resulting in 
incompatibilities with other systems in the organization. 

Requiring privileged access to participating hosts would be 
asking for more trust than most organizations will be will- 
ing to give us, especially during the initial deployment 
stages of Legion. Much as we must accommodate operat- 
ing system heterogeneity, we must live with the available 
network resources. However, we can layer better protocols 
over existing ones, and we can state that performance for a 
particular application on a particular network will be poor 
unless the protocol is changed. Our experience with Mentat 
[8] indicates that it is sufficient to layer a system on top of 
an existing host operating system. 

In addition to the purely technical issues, there are also 
political, sociological, and economic ones. These include 
encouraging the participation of resource-rich centers and 
discouraging the human tendency to free-ride. We intend to 
develop mechanisms that facilitate accounting policies that 
encourage good community behavior. 

2.1. The core object model 

This paper describes the core Legion object model. The 
model specifies the composition and functionality of 
Legion’s core objects-those objects that cooperate to cre- 
ate, locate, manage, and remove objects from the Legion 
system. The model reflects the underlying philosophy and 
objectives of the Legion project. In particular, the object 
model facilitates a flexible extensible implementation, pro- 
vides a single global name space, grants site autonomy to 
participating organizations, and scales to millions of sites 
and trillions of objects. Further, it offers a framework that 
is well suited to providing mechanisms for high perfor- 
mance, security, fault tolerance, and commerce. 

Legion specifies the functionality, not the implementa- 
tion, of its core objects. The Legion system designers can- 
not predict the many and varied needs of users. Therefore, 
the object core will consist of extensible, replaceable com- 
ponents. The Legion project will provide implementations 
of the objects that comprise the core, but users will not be 
obligated to use them. Instead, Legion users will be 
encouraged to select or construct objects that implement 
mechanisms and policies that meet the users’ own specific 
requirements. 

To facilitate the development of applications that span 
multiple sites, a single global name space will unite the 
objects in the Legion system; this will make remote files 
and data more accessible. Site autonomy will be provided 
by distributing control of Legion resources among an 
extensible set of core user-level Legion objects. Control- 
ling a resource includes making decisions about which 
Legion objects can access it, and to what extent. Placing 
this responsibility in the hands of objects that users can 
build themselves gives sites the autonomy that they prop- 
erly require. 

552 



The Legion system will be fully scalable. Although the 
object model includes, and relies on, a few single logical 
Legion objects, access to these objects will be limited due 
to heavy caching and hierarchical organization of lower 
level objects. Legion objects can be replicated to further 
reduce contention. Thus, the system will be configured 
such that an increase in the number of Legion computing 
resources will not impact contention for the few “central- 
ized” Legion objects. 

The initial design phase of Legion has been completed 
and is presented in this paper, which describes the core 
Legion object model, characterizes its main components, 
describes the mechanism it is intended to support, and 
addresses the issue of scalability. The model is still evolv- 
ing and includes several aspects that have yet to be 
addressed in detail, or that are addressed in other docu- 
ments [18][11]. 

Implementation of the core model has just begun and is 
expected to take approximately one year. In the interim, 
application and tool developers at the University of Vir- 
ginia use our existing prototype system, the Campus Wide 
Virtual Computer (CWVC) [lo]. The CWVC is based on 
the Mentat object-oriented parallel processing system [SI; 
it contains over one hundred hosts of five different archi- 
tecture types, spanning several different file systems and 
university departments. Applications developed using the 
CWVC will be source code compatible with the eventual 
fully developed Legion system. 

3. Related work 

The vision of a seamless metacomputer such as Legion 
is not novel; worldwide computers have been the vision of 
science fiction authors and distributed systems researchers 
for decades. However, to our knowledge no other project 
has the same broad scope and ambitious goals of Legion. 
Fortunately, it is not necessary to develop all of the 
required technology from scratch. A large body of relevant 
research in distributed systems, parallel computing, man- 
agement of workstation farms, and pioneering wide area 
parallel processing projects, will provide a strong founda- 
tion on which to build. 

OSF/DCE [I31 is rapidly becoming an industry stan- 
dard. Legion and DCE share many of the same objectives, 
and draw upon the same heterogeneous distributed com- 
puting literature for inspiration. Consequently, both 
projects use many of the same techniques, including an 
object-based architecture and model, IDL‘s to describe 
object behavior, and wrappers to support legacy code. 
However, Legion and DCE differ in several fundamental 
ways. First, DCE does not target high-performance com- 
puting; its underlying computation model is based on 
blocking RPC between objects. Further, DCE does not sup- 

port parallel computing; instead, the emphasis is on client- 
server based distributed (computing. Legion, on the other 
hand, is based upon a parallel computing model, and one of 
our primary objectives is high performance via parallel 
computation. Another important difference is that Legion 
specifies very little about the implementation. Users and 
resources owners are permitted-even encouraged-to 
provide their own implementations of “system” services. 
Our core model is completely extensible and provides 
choice at every opportunity-from security to scheduling 
to fault-tolerance. Despite these differences, we recognize 
that DCE is here to stay for the foreseeable future. Our 
intention, therefore, is to support DCE-like services and 
DCE compatibility modules so that applications developed 
in a DCE environment can be easily ported to Legion. 

Several other projects have also begun to address some 
of the same issues that Legion does. For example, Nexus 
161 provides communication and resource management 
facilities foir parallel language compilers. Castle [3] is a set 
of related projects that aims to support scientific applica- 
tions, parallcl languages and libraries, and low-level com- 
munications issues. The NOW [ I ]  project provides a 
somewhat more unified strategy for managing networks of 
workstations, but is intended to scale only to hundreds of 
machines instead of millions. Globe [ 161 is an architecture 
for supporting wide area diistributed systems, but does not 
yet seem to address important issues such as security and 
site autonorny. Finally, CORBA [4] defines an object-ori- 
ented mode:l for accessing distributed objects. CORBA 
includes an Interface Description Language, and a specifi- 
cation for the functionality of run-time systems that enable 
access to objects. But like .DCE, CORBA is based on a cli- 
ent-server model rather th.an a parallel computing model, 
and less emphasis is placed on issues such as object persis- 
tence, placement, and migration. Thus, while each of these 
projects-arid others like them-addresses some, or even 
many, of the issues that are necessary for the realization of 
wide area parallel computing, none aspires to deal as com- 
prehensively with all of the issues that Legion does. 

4. The ‘Legion core 

Legioin is an object-oriented system comprising inde- 
pendent, logically address space disjoint objects that com- 
municate with one another via method invocation. The fact 
that Legion is object-orient’ed does not preclude the use of 
non-object-oriented languages or non-object-oriented 
implementations of objects. Method calls are non-blocking 
and may be accepted in any order by the called object. 
Each method has a signature that describes the parameters 

method signatures for ani object fully describes that 
object’s interface, which is (determined by its class. Legion 

and return value, if any, of the method. The complete set of 

553 



class interfaces can be described in an Interface Descrip- 
tion Language (IDL). Initially. two different IDL‘s will be 
supported by Legion: the CORBA IDL [4], and the Mentat 
Programming Language (MPL) [14]. 

In the Legion object model, each Legion object belongs 
to a class, and each class is itself a Legion object. All 
Legion objects export a common set of object-mandatory 
member functions, including may-I(), save-state(), and 
restore-state(). Class objects export an additional set of 
class-mandatory member functions, including create(), 
derive(), and inherit-from(). 

The power of the Legion object model comes from the 
important role of Legion classes. In Legion, much of what 
is usually considered system-level responsibility is dele- 
gated to user-level class objects. For instance, Legion 
classes are responsible for creating and locating their 
instances and subclasses, and for selecting appropriate 
security and object placement policies. The core Legion 
objects simply provide mechanisms for user-level classes 
to implement the policies and algorithms that they choose. 
Assuming that we define the operations on core objects 
appropriately (i.e. that they are the right set of primitive 
operations to enable a wide enough range of policies to be 
implemented), this philosophy effectively eliminates the 
danger of imposing inappropriate policy decisions, and 
opens up a much wider range of possibilities for the appli- 
cation developer. 

4.1. Security 

Legion is intended to be used by a wide variety of users 
with a correspondingly wide variety of security concerns. 
Thus, it is not possible to dictate a single standard policy 
by which all users must abide. Any compromise position 
would most likely either degrade performance to a degree 
unacceptable to many users, or be too insecure for an 
equally large number. 

To appeal to the widest range of users, Legion must 
allow users to define whatever degree of security they 
deem necessary in a manner that is simple to implement 
and that does not penalize other users unnecessarily. One 
alternative is to have a number of existing approaches from 
which users can select. Another-the one we have cho- 
sen-is to provide users with the tools necessary to build 
robust security measures that provide the required degree 
of security. A number of approaches will be provided so 
that users can customize as much or as little of their secu- 
rity mechanism as they wish. 

Legion security is divided into three components. The 
message layer is responsible for inter-object communica- 
tion and authentication. The discretionary layer allows the 
user to provide a function, called may-I(), that acts as an 
access control predicate. Before any other object can 

invoke any method on an object it must gain approval from 
the may-I() function. This approach permits any discre- 
tionary policy to be defined, concentrates all discretionary 
security in one location, and frees the implementation of 
the object’s functionality from being cluttered with secu- 
rity concerns. Finally, the mandatory layer enables Legion 
objects acting as Security Agents to monitor other Legion 
objects in order to enforce security policies that the objects 
themselves cannot be trusted to abide by. A Security Agent 
can restrict the forms of communications that objects under 
its scrutiny can undertake. It can also implement dynamic 
information flow policies by tracking the flow of secure 
information to other objects. 

The Legion security model is elegant and powerful. 
Using its basic mechanisms, it will be possible to imple- 
ment CORBA, DCE, Kerberos, MLS, NFS, and other 
existing systems. Further, the flexibility of the mechanism 
allows entirely new forms of security policies to be devel- 
oped and enforced. The Legion security model is described 
in detail in [181. 

4.2. Core class objects 

Legion defines the interface and functionality of several 
core class objects, including Legionobject, Legionclass, 
LegionHost, Legionvault, and LegionBindingAgent. 
Legionobject provides the full set of object-mandatory 
member functions. All Legion objects are instances of 
classes that are eventually derived from the class Legion- 
Object, and thus they inherit all of the member functions 
defined in Legionobject. Legionclass provides the full set 
of class-mandatory member functions. All Legion classes 
are eventually derived from Legionclass, and thus they 
inherit all of the member functions defined in Legionclass. 
Legionclass is derived from Legionobject; thus, classes 
are objects in Legion. Classes may alter the functionality of 
object- or class-mandatory member functions by overload- 
ing them, by redefining them, or by explicitly “re-inherit- 
ing” their implementation from class objects other than 
Legionobject and LegionClass. 

LegionHost, Legionvault, and LegionBindingAgent are 
base classes for Legion’s core class types-Hosts, Vaults, 
and Binding Agents. The core classes set the minimal 
interface that the core objects should export. Every core 
object is an instance of some class that is eventually 
derived from one of the class objects above. For example, 
as shown in Figure 1, UnixHost and SPMDHost will be 
two different Legion classes derived directly from class 
LegionHost. More specific host classes will be derived 
from each of these. A Sun workstation would run an 
instance of class UnixHost, whereas a Silicon Graphics 
Power Challenge would run an instance of UnixSMMP, a 
class derived from UnixHost. Similar class hierarchies will 

554 



develop for Vaults and Binding Agents. The roles of the 
core objects are described later in the paper. 

FIGURE 1. The Legion class LegionHost is the root of all 
classes whose instances are Legion Hosts. In this figure, 
UnixHost and SPMDHost are derived directly from 
LegionHost. UnixSMMP is derived from UnixHost, and 
CM-5 and CrayT3D are derived from SPMDHost. The figure 
shows six different Legion Hosts: two instances of both 
UnixHost and UnixSMMP, and one instance of both CM-5 
and CrayT3D. 

4.3. Naming and binding 

LOID’s: Every Legion object is named by a Legion Object 
Identifier (LOID). An LOID comprises four different 
fields-a Format, a Class Identifier, an Instance Number, 
and a Public Key extension. The Format field makes up the 
first 32 bits of the LOID, and although the other three fields 
are expected to be contained in all LOID’s, their size, for- 
mat and use can vary with different formats. The Class 

FIGURE 2. An LOID comprises a Format, a Class Identifier, 
an Instance Number, and a Public Key extension. 

Identifier indicates the class of the object that the LOID 
names. Legionclass is ultimately responsible for handing 
out unique Class Identifiers to each new class. The Instance 
Number field can be used by classes to provide a unique 
LOID to each instance of the class, but this use is not man- 
dated by Legion-a class object can assign lnstance Num- 
bers in any way it chooses. The Public Key extension field 
allows the entire LOID to be a public key for the object, 
and is used for security purposes [17][18]. Our initial 
implementation will support fixed size LOID’s that contain 
64-bit Class Identifiers, 64-bit Instance Numbers, and 128- 
bit Public Key extensions. Other LOID formats will 
emerge. 

Legion will use standard protocols and the commwnica- 
tion facilities of host operating systems to support commu- 
nication between Legion objects. However, LOID’s have 
meaning only at the Legion level. Consequently, Legion 
must provide a mechanism by which LOID’s can be bound 
to names that have meaning to these underlying protocols 
and communication facilities. The general problem is that 
one object, A, has the LOID of another object, B, and A 

wishes to invoke member functions on B. A physical 
Object Address for B must be obtained before the commu- 
nication can take place. 

Object Addresses: An Object Address is a list of Object 
Address Elements, along, with semantic information that 
describes how to utilize the list. An Object Address Ele- 
ment contains two basic parts-a 32-bit Address Type 
field, and the address itself. The Address Type field indi- 
cates the type of address (e.g. IP, XTP, etc.) that is con- 
tained in tlhe address specific field, whose size and format 
will vary depending on the Address Type. The first (and 
probably the most common) type of Object Address will 
consist of a single Object Address Element that comprises 
a 32-bit IP address and a 16-bit port number. 

The Address Semantic: field is intended to encapsulate 
various forms of multicast communication. For example, 
the field could specify that all addresses should be sent to, 
that one of the addresses should be chosen at random, that 
k of the N addresses in the list should be used, etc. The 
composition and meaning of the full set of options that will 
be defined by Legion have not yet been identified, but pro- 
visions for extending the list with user-definable Address 
Semantics will likely be made. 

Object- 
Address 

Object 
Addres 

321 bits 
FIGURE 3. An Object Address comprises a list of physical 
addresses and semantic information that describes how the 
list is to be used. 

Bindings: 13indings from LOID’s to Object Addresses in 
Legion are implemented as simple triples. A binding con- 
sists of an L,OID, an Object Address, and a field that speci- 
fies the time that the bindling becomes invalid. This field 
may be set to some value that indicates that the binding 
will never become explicitly invalid. Bindings are first 
class entities that can be passed around the system and 
cached within objects. 

Binding Agents: Binding Agents are derived from the 
Abstract class LegionBindingAgent. A Binding Agent acts 
on behalf of other Legion objects to bind LOID’s to Object 
Addresses. That is, given an LOID for an object, a Binding 
Agent is responsible for returning a binding to an Object 
Address for the object that the LOID names. The persistent 
state of each Legion object contains the Object Address of 
its Binding Agent. 

Legion does not mandarte how any particular Binding 
Agent performs its duty. Typically, however, a Binding 
Agent will maintain a cache of bindings that it will consult 

555 



in response to binding requests from other objects; Legion- 
BindingAgent’s member functions reflect this fact. Any 
particular Binding Agent may also consult other Binding 
Agents, and may employ any other means to locate a bind- 
ing for a given LOID. If all else fails, the Binding Agent 
can consult the class of the object, which must be able to 
return a binding if one exists. A more in-depth discussion 
of a typical binding procedure is included in Section 5.1. 
LegionBindingAgent has the following member functions: 
* binding get-binding(LOID), 

binding get-binding(binding): The overloaded method 
get-binding() is passed an LOID or a binding, and 
returns a binding. Passing an LOID as the parameter 
requests that the Binding Agent bind it to an Object 
Address. Passing a binding requests that the Binding 
Agent return a different binding than the one passed as 
a parameter. For instance, if the Object Address in the 
binding parameter matches the one in the Binding 
Agent’s local cache, the Binding Agent might contact 
the class object for an updated binding. Thus, the object 
employing the Binding Agent can explicitly request 
that a binding be refreshed; it will typically do so when 
the binding that it has doesn’t work. 

invalidate-binding(binding): The overloaded method 
invalidate-binding() tells the Binding Agent to remove 
bindings from its cache. The first form requests that the 
Binding Agent remove an LOID’s binding, if any 
exists, from its cache. The second form requests that it 
remove a binding if it matches exactly the binding that 
is passed as an argument. 

0 add-bindingfbinding): add-binding() is used to add a 
binding to the cache of bindings that the Binding Agent 
maintains. It can be used by Binding Agents, or any 
other Legion objects, to explicitly propagate binding 
information for performance purposes. 

* invalidate-binding(LOlD), 

4.4. Object states 

The full set of Legion hosts will be unable to simulta- 
neously provide each Legion object with a process to 
implement the disjoint address space model. Therefore, a 
Legion object can be in one of two different states, Active 
or inert. When. an object is Active, it is running as a pro- 
cess (or set of processes) on a Legion Host, and it can be 
accessed via an Object Address. When an object is Inert, it 
exists in persistent storage that is controlled by a Legion 
Vault, it is described by an Object Persistent Representu- 
tinn (OPR), and it can be located using an Object Persistent 
Address (OW). Throughout their lifetime, objects can be 

moved between Active and Inert states by other Legion 
objects. 

Inert I Active 
/-----l 

Disk I I 

I 

FIGURE 4. A sample subset of Legion comprising three 
disks (I, J ,  and K) and three hosts (1 ,  2, and 3). Objects A and 
B are moved between Active and Inert states. Object A has 
been deactivated into an Object Persistent Representation on 
Disk I, and B has been migrated from Host 2 to Host 3 
through Disk I 

Object Persistent Representations and Addresses: An 
OPR is associated with an Inert object and can be used to 
restore the state of the object. Every Legion object will 
export save-state() and restore-state() member functions. 
Save-state() will be called just before an object is deacti- 
vated, and restore-state() will be called as the first member 
function after the object is activated. Thus, objects are 
given the opportunity to carry their state information with 
them when they are migrated between hosts [5]. The OPA 
of an Inert object is analogous to the Object Address of an 
Active object. An OPA gives an object a handle on the 
OPR that the object reads and writes to save and restore its 
state information. Typically, an OPA will be a file name, 
and will only necessarily be meaningful to the Legion 
Vault that controls it, and to the object with which it is 
associated. 

Legion Hosts: A Legion Host is a host’s representative to 
Legion. It is responsible for executing objects on the host, 
reaping objects, and reporting object exceptions. Thus, the 
Legion Host is ultimately responsible for deciding which 
objects can run on the host it represents. Since Legion 
Hosts can be implemented by the users who offer their 
resources to Legion, and since our security model is one in 
which security is built into the object by its implementor, 
Legion users can select the policy and mechanism that 
restrict access to their own hosts. In a Unix-like implemen- 
tation, all Legion objects that execute on a host will exe- 
cute with the same privilege as the Legion Host. Therefore, 
Legion Hosts will typically execute with minimal privi- 
lege. Individual sites may choose to grant Legion Hosts a 
higher privilege if they desire. 

A Legion Host is associated with a single logical 
machine, not necessarily a single physical machine. This 
allows resource providers to aggregate multiple machines 
into a single logical resource, which can be helpful in for- 

556 



mulating a cohesive security or scheduling policy for the 
set of machines. It can also reduce the complexity of the 
environment for other objects in Legion. 

Legion Hosts are started from outside Legion, for exam- 
ple from a command line or shell script in the host operat- 
ing system. This is because Hosts are the mechanism by 
which objects are started; there is no Legion object to start 
Hosts. When new Legion Hosts are activated, they are 
responsible for registering themselves with the LegionHost 
class object. Hosts export member functions that start or 
restart processes, that suspend processes that are currently 
running, and that restrict access to the host on which they 
run. 

Legion Vaults: Vaults hold OPR’s for other Legion 
objects. In response to save-state() and restore-state() 
member functions, an object reads and writes its state from 
and to its OPR, which typically exists on persistent storage. 
A Vault has access to the OPR’s it holds via mechanisms 
outside of Legion (e.g., a shared Unix file or directory). 
When an object is created, a Vault for the object is chosen 
by the object’s class, and the Vault supplies an empty OPR. 
The object’s save-state() method can then write its state 
into this OPR before being deactivated, and its 
restore-state() method can read it out upon being reacti- 
vated. Sometimes an object’s class (or the Placement Map- 
per on behalf of that class) might want to migrate an object 
to another Legion Host. This could require moving the 
OPR to a Vault that can share an OPR with an object run- 
ning on the new host. It is up to the class (or Placement 
Mapper) to select such a Vault, and up to the Vaults to 
transfer the OPR. The mechanism for saving and restoring 
state in Legion is described in more detail in 151. 

4.5. Class objects 

Each class object exports class-mandatory member 
functions to create new instances (create()) and subclasses 
(derive()), to delete instances and subclasses (delete()), and 
to find instances and subclasses (get-bindingo). A class 
object is responsible for assigning LOID’s to its instances 
and subclasses upon their creation. For its instances (non- 
class objects), the class object can construct the LOID 
completely locally; it assigns the Class Identifier portion to 
match its own Class Identifier, and uses the Instance Num- 
ber field in any way it sees fit, most likely as a sequence 
number to guarantee that all LOID’s are unique. To assign 
an LOID to a new subclass, the class object contacts 
Legionclass to obtain a new Class Identifier. This allows 
Legionclass to be an authority for finding class objects. 
Conventionally, the Instance Number portion of a class 
object’s LOID is set to zero. 

To perform the functions for which it is responsible, 
each class object must logically maintain a table whose 
entries contain fields for an LOID, an Object Address, a 
Placement Mapper, a Current Vault Set, and a Candidate 
Vault Set. In practice, the class object may employ other 
Legion objects, such as dlatabase servers, to maintain some 
or all of the information that class objects are required to 
maintain in what we refer to as the “logical table.” Each 
row in the table corresponds to an object that the class 
object created-an instance or a subclass. The intended 
uses of each field are described below: 

LOiD: The LOID names the object for which the entry 
contains information. 
Object Address: The Object Address field contains 
either the Object Address of the object (if the object is 
currentlly Active and the class knows its Object 
Address), or NIL (if tihe object is currently Inert). This 
field is used to respond to get-binding() requests from 
Binding Agents and other Legion objects. 
Placement Mapper: The Placement Mapper field con- 
tains the LOID of the object that is responsible for 
assigning the object entered in the table to a Legion 
Host when it is about to be activated. This mapping 
decision is intentionally left out of the core object 
model, except for a few “hooks” (including this one) 
that allow other Legion objects to implement schedul- 
ing policies. It is expected that each class will have a 
default Placement Mapper that is inherited by each of 
its objects unless a different Mapper is explicitly speci- 
fied. 
Current Vault Set: The Current Vault Set field contains 
a list of Vaults that currently have Object Persistent 
Representations for a.n object. Typically, only one 
Legion Vault will have a copy of the Object Persistent 
Representation of an object. 
Candidate Vault Set: The Candidate Vault Set field indi- 
cates the Vaults that may be given responsibility for the 
object. This field could be implemented as a simple list, 
but more likely it will need to encapsulate more sophis- 
ticated information, such as “no restriction” or “all 
Vaults with a given security policy.” 
Objects may be given the opportunity by their class to 

directly manipulate these fields. In this way, the Legion 
class mechanism is reminixent of reflective architectures. 

5. Mechanism 

The components described in the previous sections are 
intended to support the operations that are necessary for 
wide area parallel processing. Two of the most common 
and important of these operations-binding and object cre- 
ation-are described in detail below. 

557 



5.1. Binding 

This section describes a typical process by which a 
Legion Object Identifier gets bound to an Object Address. 
Recall that LOID’s are meaningful only at the Legion level, 
and that the underlying communication facilities upon 
which Legion relies must be given lower level names in 
order to allow objects to communicate. Thus, LOID’s must 
be bound to Object Addresses, which can in fact encapsu- 
late names that are meaningful to underlying facilities. 

The binding process is intended to be completely hidden 
from the vast majority of Legion users. Thus, it will typi- 
cally be carried out by the various compilers and run-time 
systems that comprise Legion. A user will write a Legion 
application program in her favorite language, and will typi- 
cally name Legion objects with string names. The program 
is compiled within a particular “context” by a Legion- 
aware compiler. The compiler uses the context to map 
string names to LOID’s, which then become embedded 
within Legion executable programs. As the object exe- 
cutes, the run-time system interprets the LOID’s and binds 
them to Object Addresses as described below. The reader 
should keep in mind that the binding model is key to the 
scalability of Legion-a poor design would seriously limit 
scalability. 

The model: A class is ultimately responsible for providing 
bindings to its instances and subclasses. But to make the 
binding process scalable, and to distribute functionality, 
control, and responsibility appropriately, the object model 
introduces other objects to the binding process. Suppose 
that object A wishes to bind the LOID for object B, which 
is an instance or subclass of class C. The following Legion 
objects are potentially involved in the binding process: A, 
A’s Binding Agent, C, and Legionclass. The role of each 
of these objects is described below. 

Details: Object A begins the binding process by generating 
a reference to the LOID of B. Since A is a Legion object, it 
contains a Legion-aware communication layer which 
implements a binding cache. Therefore, A will often have a 
cached binding for B, and external objects will be unneces- 
sary. If A does not contain a cached binding, it invokes the 
get-binding() member function on its Binding Agent, for 
which it is guaranteed to have an Object Address as part of 
its persistent state. The Binding Agent may have a binding 
for B’s LOID in its cache, in which case it simply responds 
to A with a binding for B. If the Binding Agent does not 
have a cached binding, i t  may undertake any process i t  
wishes in order to generate or locate a binding for B’s 
LOID. In particular, the Binding Agent may consult other 

Binding Agents, which may be organized in a hierarchy to 
allow the binding process to scale. 

Sometimes, a Binding Agent will be unable to locate a 
binding for B by any means other than contacting class 
object C. Recall that B is an instance or subclass of C, 
which is therefore responsible for finding B. We delay the 
discussion of how to find C until the next section, and 
assume for now that it can be done. A’s Binding Agent 
invokes the get-binding() member function on C, which in 
turn consults its logical table (Section 4.5). If the Object 
Address field for the appropriate entry in the logical table 
is not empty, then C can construct and return a binding. 
The returned binding is passed back through the objects, 
each of which may cache it. 

4 BA get-binding(B) 

U LOID fw B 

FIGURE 5 .  A typical binding process. Object A generates a 
reference to B, and contacts its Binding Agent for a binding. 
The Binding Agent checks its local cache, and then consults 
C, the class that created B. Table entries that are filled with 
diagonal lines show the places where a binding for B may be 
cached. 

Finding the responsible class object: Omitted from the 
above discussion is an explanation of how C, the class 
responsible for locating B, is itself located. At first glance, 
this would seem to be as difficult as finding B. However, 
several characteristics ofthe object creation process and of 
Legion classes combine to make it a different problem- 
one that can be solved in a efficient and scalable fashion. 

Recall that B is either an instance or a subclass of C. 
Therefore, C is a class object with an associated unique 
Class Identifier, which was assigned by Legionclass. Thus, 
Legionclass can be the authority for locating class objects. 
Legionclass does not directly maintain the bindings; 
instead, it delegates that responsibility to other class 
objects. To do so, Legionclass maintains a mapping of 
LOID pairs. The existence of pair <X,Y> indicates that X 
is responsible for locating Y. When a new class object D is 
created, the creating class C contacts LegionClass for a 
new Class Identifier to assign to the class. At this time, 
Legionclass can record that C is responsible for locating D 
by constructing and maintaining the pair <C,Dr. When 
objects are trying to locate class object D, Legionclass can 

558 



point them toward C. When objects are trying to locate a 
non-class object N, the process is even simpler; the LOID 
of the responsible class can be determined by setting the 
Class Identifier field to match that of N, and by setting the 
Instance Number field to zero. 

Notice that we now have the LOID of the responsible 
class C. Thus, the binding process may need to be repeated 
in order to locate C, and again to locate C’s superclass, and 
so on. Since all classes are eventually derived from Legion- 
Class, the process can end when the responsible class is 
Legionclass itself. In this case, Legionclass simply hands 
out the appropriate binding which, as a class object, it is 
responsible for maintaining. 

While this process may seem to scale poorly, extensive 
caching of both bindings and “responsibility pairs” ensures 
that the vast majority of accesses occurs locally. A more 
extensive argument for the scalability of the binding pro- 
cess is included in Section 6. 

5.2. Object creation 

As with the binding process described above, the cre- 
ation of Legion objects is intended to be initiated by nor- 
mal Legion programs via the mechanisms that the 
programs’ implementation languages support. In C++, for 
instance, the creation of a non-class object might be trig- 
gered by the use of the keyword “new.” The creation of a 
new class object might result from using the C++ inherit- 
ance mechanism to derive a new class. The Legion-aware 
compiler for the language creates code to call the create() 
or derive() member function on the appropriate class 
object, using the local context to map a string name to the 
intended Legion LOID. 

When a class object receives a request to create a new 
instance or subclass, it must do so with the cooperation of 
the Legion Host for the host on which the new object will 
initially run. Selecting these two objects is a scheduling 
decision that is left up to the class, which may choose to 
employ the services of a Placement Mapper [ 111. Some 
classes may allow the creating object to suggest a Legion 
Vault, a Legion Host, or both. At any rate, the actual cre- 
ation of the object is carried out by the Legion Host, which 
is given enough information by the class to allow it to cre- 
ate the new object. This information could take the form of 
an executable program, the name of an executable, a list of 
steps to follow, etc. 

Once the Legion Host has physically created the new 
object, using information provided by the class, the Legion 
Host returns the Object Address of the newly created 
object. The class object then stores the information for 
future use and returns the new LOID to the object that 
issued the request to instantiate. Alternatively, the class 
object could choose a different semantics in which, rather 

than creating a new inslance in response to a request to 
instantiate, it “reuses” an existing object and either returns 
the existing object’s LOIlD or a new LOID that maps to the 
same physical object. Another option is to multiplex multi- 
ple LOID’s to the same object address to conserve address 
spaces or to improve inteir-object communication. 

The point is that the class object can implement what- 
ever semantics it desires for either intantiating objects or 
binding LOID’s to Object Addresses. We will provide 
default implementations that will be good enough for most 
classes, but the ability to reimplement core functionality 
provides a tremendous amount of flexibility to the class 
designer. 

6. Scalability 

Scalability is an important challenge to a system that is 
intended to contain millions of sites and trillions of objects. 
Before a system can be described as scalable, a precise def- 
inition of exactly what it means to be scalable must be for- 
mulatedl-scalability is a term that is used in different ways 
by different people. Typically, a scalable architecture refers 
to one that has the property that as the number of proces- 
sors increases, the granularity of computation does not 
need to increase to keep the machine balanced. Thus, the 
machine can be scaled up to an arbitrary number of proces- 
sors. Architectural scalability is claimed by many different 
architectures, including hypercubes, meshes, tori, and 
rings. But as Reed [IS] points out, scalability of an archi- 
tecture must be claimed with respect to a particular appli- 
cation and the communication patterns that the application 
exhibits. For example, a two dimensional torus or mesh is 
scalable with respect to 2-11 nearest-neighbor stencil appli- 
cations such as computatiional fluid dynamics. However, 
the architectures are not scalable with respect to applica- 
tions that exhibit random communication patterns. The 
hypercube, however, is scalable with respect to random 
communication. 

In distributed systems, scalability is best summed up by 
the “distributed systems principle”-that is, the number of 
requests to any particular system component must not be 
an increasing function of the number of hosts or objects in 
the system. Our claim is that as the number of Legion hosts 
and objects iincreases, no component will become a bottle- 
neck that limits performance and restricts growth. 

We make two assumptiions about the Legion system. 
First, we assume that most accesses will be local. By local, 
we mean within the same organization, for instance within 
a department or university campus. If this assumption does 
not hold, then the scalability of Legion will depend on the 
scalability of the underlying interconnect. We do not 
expect the underlying wide area network to be scalable in 
the paralllel architecture sense. The second assumption is 

559 



that class objects will not migrate frequently, and further, 
that they will tend to stay active for long periods of time 
relative to instance objects. 

With these assumptions in mind, let us examine where 
communication and interaction in Legion occur. First, con- 
sider communication that occurs between user level objects 
inside of an application. This communication may or may 
not contain a bottleneck. The user may have chosen an 
implementation with a centralized object that acts as 
shared memory for a large number of workers. The object 
could very easily become a bottleneck and limit application 
performance. This does not mean that Legion is not scal- 
able; it simply means that the application is not scalable. 
Legion does not guarantee that all applications written 
using Legion as the underlying fabric will be scalable. 

Instead, our claim to scalability refers to communica- 
tion traffic that is required as a part of the Legion imple- 
mentation model. This traffic is concentrated in two 
areas-LOID binding lookups from objects to Binding 
Agents, and Binding Agent traffic required to satisfy object 
binding requests. We consider each separately below. 

Object to Binding Agent traffic: Each Legion object will 
maintain a cache of bindings. Therefore, an object’s Bind- 
ing Agent will only be consulted on a local cache miss, or 
when a stale binding is encountered. The Legion system 
will include many Binding Agents, and each object may 
select its Binding Agent based on its charge rate, its perfor- 
mance, or other criteria. As the load on a particular Bind- 
ing Agent increases, or as the domain serviced by a 
particular agent enlarges, more Binding Agents may be 
created. Thus, each Binding Agent can be set up to service 
a bounded number of clients, ensuring that object to Bind- 
ing Agent traffic is scalable. 

Traffic induced by Binding Agents: Recall that on a 
cache miss, a Binding Agent must find a binding. If all 
requests went to a single “master” Binding Agent, the sys- 
tem would not scale. Instead the Binding Agent consults 
the class object of the object for which it needs a binding. 
Thus, the load is distributed to the class objects. This raised 
two concerns: (1) Given the way that class objects are 
located, won’t Legionclass become a bottleneck, and ( 2 )  
Won’t commonly used classes-for instance file classes- 
also become a bottleneck? 

The Binding Agent can acquire the binding for a class 
object by consulting Legionclass, or by consulting another 
Binding Agent. Under the assumptions that class bindings 
change very slowly and Binding Agents cache class object 
bindings, the traffic to Legionclass will be reduced. Fur- 
ther, by constructing a k-ary tree of Binding Agents, elimi- 
nating traffic from “leaf” Binding Agents to Legionclass, 

we can arbitrarily reduce the load placed on Legionclass. 
In essence, Binding Agents could be organized to imple- 
ment a software combining tree [I9]. 

The problem of popular class objects becoming bottle- 
necks can be alleviated by “cloning” class objects when 
they become heavily used. The cloned class is derived from 
the heavily used class without changing the interface in any 
way. New instantiation and derivation requests are passed 
to the cloned object, making it responsible for the new 
objects. Further, several clones can exist simultaneously, 
with the different clones residing in different domains. 

Thus, Legion is scalable in the sense that the underlying 
mechanisms mandated by the system model have imple- 
mentations that will scale to an arbitrary number of hosts 
and objects. However, it does not promise scalability for all 
applications-no architecture can do that. 

7. Summary 

This document has described the core Legion object 
model. The model places system-level responsibility in the 
hands of classes and objects that users can create and 
define themselves. Legion specifies the intended function- 
ality of the core objects-Legionobject, Legionclass, 
Legion Hosts, Legion Vaults, and Binding Agents-which 
cooperate to create, locate, and manage the objects in the 
system. But Legion encourages users to implement and 
select replacements that meet the users’ own particular 
requirements. This policy, in concert with the Legion secu- 
rity model, enables site autonomy by allowing resource 
providers to control their own resources. The Legion nam- 
ing system-comprised of LOID’s, Object Addresses, and 
bindings-unites the objects in the system, thereby facili- 
tating access to remote files and data. 

8. References 

111 Thomas E. Anderson, David E. Culler, David A. Patterson, 
and the NOW team, “A Case for NOW (Networks of Work- 
stations),” December 9, 1994, to appear IEEE Micro. 

[2] Grady Booch, Obiect Oriented Design with Applications, The 
BenjamidCummings Publishing Company, Inc., Redwood 
City, California, 1991. 

[3] The Castle Project, University of California, Berkeley, http:// 
http.cs.berkeley.edu/projects/parallel/castle/castle.html. 

41 Digital Equipment Corporation, Hewlett-Packard Company, 
HyperDesk Corporation, NCR Corporation, Object Design, 
Inc., SunSoft, Inc., The Common Object Request Broker: 
Architecture and SpeciJication, OMG Document Number 
93.xx.yy, Revision 1.2, Draft 29, December 1993. 

51 Adam J. Ferrari, Andrew Grimshaw, “Persistent Object State 
Management in Legion,” University of Virginia Computer 
Science Technical Report CS-95-36, in progress. 

560 



[6] Ian Foster, Carl Kesselman, Steven Tuecke, “Nexus: Runtime 
Support for Task-Parallel Programming Languages,” Argonne 
National Laboratories, http://www.mcs.anl.gov/nexus/paper/. 

[7] Adele Goldberg, Smalltalk-SO: The Lanpuage and its Imule- 
mentation, Addison-Wesley, Reading, Massachusetts, 1983. 

[8] Andrew Grimshaw, William A. Wulf, “Legion-A View from 
50,000 Feet,” High Peqormance Distributed Computing-5, 
August 1996. 

191 Andrew Grimshaw, “Easy to Use Object-Oriented Parallel 
Programming with Mentat,” IEEE Computer, pp. 39-51, May 
1993. 

[IO] Andrew Grimshaw, Anh Nguyen-Tuong, William A. Wulf, 
“Campus-Wide Computing: Results Using Legion at the Uni- 
versity of Virginia,” University of Virginia Computer Science 
Technical Report CS-95-19, March 27, 1995. 

[ I  I ]  John F. Karpovich, “Support for Object Placement in Wide 
Area Heterogeneous Distributed Systems,” University of Vir- 
ginia Computer Science Technical Report (3-96-03, January 
16, 1996. 

[12] Mike Lewis, Andrew Grimshaw, “The Core Legion Object 
Model,” University of Virginia Computer Science Technical 
Report CS-95-35, August 1995. 

[I31 H.W. Lockhart, Jr., OSF DCE Guide to Developing Distrib- 
uted Applications, McGraw-Hill, Inc. New York 1994. 

[I41 The Mentat Research Group, Mentat 2.8 Programming Lan- 
guage Reference Manial, Department of Computer Science, 
Urriversity of Virginia, 1995. 

[IS] Daniel A. Reed, Richlard M. Fujimoto, Multicomputer Net- 
-- works: Message-Based Parallel Processing, The MIT Press, 
Cambridge, Massachusetts, 1985. 

[ 161 M. van Steen, P. Homburg, L. van Doom, A.S. Tanenbaum, 
and W. de Jonge. “Towards Object-based Wide Area Distrib- 
uted Systems”. In L.-E Carbrera and M. Theimer, (eds.), Pro- 
ceedings International Workshop on Object Orientation in 
Operating Systems, pp. 224-227, Lund, Sweden, August 
1995. 

[ 171 Chenxi Wang, Williani A. Wulf, *‘A Distributed Key Gener- 
ation Technique,” University of Virginia Computer Science 
Technical Report CS-968-08, March 1996. 

[18] William A. Wulf, Chenxi Wang, Darrell Kienzle, “A New 
Model of Security for Distributed Systems,” University of 
Virginia Computer Science Technical Report CS-95-34, 
August 1995. 

Pen-Chung Yew, Nian-Feng Tzeng, Duncan H. Lawrie, 
“Distributing Hot-Spot .Addressing in Large-scale Multipro- 
cessors,” IEEE Transactions on Computers, Vol. C-36(4), 
April 1987. 

[19] 

56 1 

http://www.mcs.anl.gov/nexus/paper

