
Constraint sat. prob. (Ch. 6)

Announcements

Writing 1 rewrites
-Check moodle for who graded you and email

directly to them

Writing 2 due Sunday (more genetic
algorithm stuff)

CSP

A constraint satisfaction problem is when there
are a number of variables in a domain with
some restrictions

A consistent assignment of variables has no
violated constraints

A complete assignment of variables has no
unassigned variables

(A solution is complete and consistent)

CSP

Map coloring is a famous CSP problem
Variables: each state/country
Domain: {yellow, blue, green, purple} (here)
Constraints: No adjacent variables same color

Consistent
but partial

CSP

partial and
not consistent

Consistent and
complete

CSP

Another common use of CSP is job scheduling

CSP

Suppose we have 3 jobs: J
1
, J

2
, J

3

If J
1
 takes 20 time units to complete, J

2
 takes

30 and J
3
 takes 15 but J

1
 must be done before J

3

How to write this as a boolean expression?

CSP

Suppose we have 3 jobs: J
1
, J

2
, J

3

If J
1
 takes 20 time units to complete, J

2
 takes

30 and J
3
 takes 15 but J

1
 must be done before J

3

We can represent this as (and them together):
J

1
 & J

2
: (J

1
 + 20 < J

2
 or J

2
 + 30 < J

1
)

J
1
 & J

3
: (J

1
+20 < J

3
)

J
2
 & J

3
: (J

2
 + 30 < J

3
 or J

3
 + 15 < J

2
)

Types of constraints

A unary constraint is for a single variable
(i.e. J

1
 cannot start before time 5)

Binary constraints are between two variables
(i.e. J

1
 starts before J

2
)

All constraints can be broken down into using
only binary and unary

Types of constraints

K-consistency is:
For any consistent sets size (k-1), there exists
a valid value for any other variable (not in set)

1-consistency: All values in the domain
satisfy the variable's unary constraints

2-consistency: All binary values are in domain
3-consistency: Given consistent 2 variables,
there is a value for a third variable(i.e. if {A,B}
is consistent, then exists C s.t. {A,C}&{B,C})

Types of constraints

For example, 1-consistent means you can
pick 0 consistent variables (if you pick nothing
it is always consistent) then any assignment
to a new variable is also consistent

This boils down to saying you can pick any
valid pick of a single variable in isolation

In other words, you satisfy the unary
constraints

Types of constraints

2-consistent means you pick a valid value
from the domain for one variable and see if
there is any valid assignment for a second var

3-consistent means you pick a valid pair of
values for 2 variables and see if there is any
valid assignment for a third variable

If you are unable to find a valid assignment for
the last variable, it is not consistent

Types of constraints

Rules: 1. Tasmania cannot be red
2.Neighboring providences cannot share colors

2 Colors:
red
green

Types of constraints

WA = {red, green}
NT = {red, green}
Q = {red, green}
SA = {red, green}
NSW = {red, green}
V = {red, green}
T = {red, green}

Not 1-consistent as we need T to not be red
(i.e. rule #2 eliminates T=red)

WA
NT
SA

Q
NSW

V T

Types of constraints

WA = NT = Q = SA = NSW = V
= {red, green}
T = {green}

1-consistent now

Also 2-consistent, for example:
Pick WA as “set k-1”, then try to pick NT...
If WA=green, then we can make NT=red
if WA=red, NT=green (true for all pairs)

WA
NT
SA

Q
NSW

V T

Types of constraints

WA = NT = Q = SA = NSW = V
= {red, green}
T = {green}

Not 3-consistent!

Pick (WA, SA) and add NT... If NT=green,
will not work with either: (WA=red,SA=green)
or (WA=green,SA=red)... NT=red also will not
work, so NT's domain is empty and not 3-cons.

WA
NT
SA

Q
NSW

V T

Types of constraints

Try to do this problem:
3 jobs: J1, J2 and J3

J3 takes 3 time units
J2 takes 2 time units
J1 takes 1 time unit
J1 must happen before J3
J2 cannot happen at time 0 or 1
All jobs must finish by time 7
(i.e. you can start J2 at time 5 but not time 6)

Applying constraints

We can repeatedly apply our constraint rules
to shrink the domain of variables (we just
shrunk NT's domain to nothing)

This reduces the size of the domain, making
it easier to check:

- If the domain size is zero, there are no
solutions for this problem

- If the domain size is one, this variable must
take on that value (the only one in domain)

Applying constraints

AC-3 checks all 2-consistency constraints:

1. Add all binary constraints to queue
2. Pick a binary constraint (X

i
, Y

j
) from queue

3. If x in domain(X
i
) and no consistent y in

domain(Y
j
), then remove x from domain(X

i
)

4. If you removed in step 3, update all other
binary constraints involving X

i
 (i.e. (X

i
, X

k
))

5. Goto step 2 until queue empty

Applying constraints

Some problems can be solved by applying
constraint restrictions (such as sudoku)
(i.e. the size of domain is one after reduction)

Harder problems this is insufficient and we
will need to search to find a solution

Which is what we will do... now

CSP vs. search

Let us go back to Australia coloring:

How can you color using search techniques?

We can use an incremental approach:

State = currently colored provinces (and their
color choices)

Action = add a new color to any province that
does not conflict with the constraints

Goal: To find a state where all provinces are
colored

CSP vs. search

Is there a problem?

CSP vs. search

Is there a problem?

Let d = domain size (number of colorings),
n = number of variables (provinces)

The number of leaves are n! * dn

However, there are only dn possible states
in the CSP so there must be a lot of duplicate
leaves (not including mid-tree parts)

CSP vs. search

CSP assumes one thing general search does
not: the order of actions does not matter

In CSP, we can assign a value to a variable at
any time and in any order without changing
the problem (all we care about is the end state)

So all we need to do is limit our search to one
variable per depth, and we will have a match
with CSP of dn leaves (all combinations)

CSP vs. search

Let's apply CSP modified DFS on Australia:
(assign values&variables in alphabetical order)

1st: blue
2nd: green
3rd: red

CSP vs. search

1

2 3

4

5
6

7

CSP vs. search

NSW:

NT:

Q:

SA:

T:
...

X X X X X

X X X

B G R

Nothing colored

NSW red
...

CSP vs. search

STOP PICKING BLUE EVERY TIME!!!!

CSP backtracking

However, this is still hope for searching (called
backtracking search (it backups up at conflict))

We will improve it by...
1. The order we pick variables
2. The order we pick values for variables
3. Mix search with inference
4. Smarter backtracking

1. What variable?

When picking the variables, we want to the
variable with the smallest domain (the most
restricted variable)

The best-case is that there is only one value
in the domain to remain consistent

By picking the most constrained variables, we
fail faster and are able to prune more of the tree

1. What variable?

Suppose we pick {WA = red}, it
would be silly to try and color V next

Instead we should try to color NT or SA, as
these only have 2 possible colorings, while the
rest have 3

This will immediately let the computer know
that it cannot color NT or SA red (prune
these branches right way)

NT
SA

1. What variable?

But we can do even better!

If there is a tie for possible values to take, we
pick the variable with the most connections

This ensures that other nodes are more
restricted to again prune earlier

For example, we should color SA first as it
connects to 5 other provinces

2. What value?

After we picked a variable to look at,
we must assign a value

Here we want to do the opposite: choose the
value which constrains the neighbors the least

This is “putting your best foot forward” or
trying your best to find a goal (while failing
fast helps pruning, we do actually want to find
a goal not prune as much as possible)

2. What value?

For example, if we color {WA = red},
then pick Q next

Our options for Q are {red, green or blue}, but
picking {green or blue} limit NT & SA to
only one valid color and NSW to 2

If we pick {Q=red}, then NT, SA & NSW all
have 2 valid possibilities (and this happens to
be on a solution path)

NA

SA NSW

1. & 2.

An analogy to 1&2 is: “trying our best (2) to
solve the weakest link (1)”

By tackling the weakest link first, it will be
easier for less constrained nodes to adapt/
pick up the slack

However, we do want to try and solve the
problem, not find the quickest way to fail
(i.e. always picking blue... ... >.<)

3. Mix search & inference?

We described how AC-3 can use inference to
reduce the domain size

Inference does not need to run in isolation;
it works better to assign a value then apply
inference to prune before even searching

This works well in combination with 1 as uses
the domain size to choose the variable and 3
shrinks domain sizes to be consistent

3. Mix search & inference?

This is somewhat similar to providing
a heuristic for our original search

Inference lets us know an estimation of what
colors are left and can be done efficiently

We can use this estimate to guide our search
more directly towards the goal

3. Mix search & inference?

In the previous example: {WA = red},
then color Q

We want to choose {Q = red} to allow the most
choices for NT and SA

Without inference we will not know about this
restriction and just have assign and realize
this constraint when we create a conflict

4. Smart backtracking

Instead of moving our search back up a single
layer of the tree and picking from there...

We could backup to the first node above the
conflict that was actually involved in the
conflict

This avoids in-between nodes which did not
participate in the conflict

4. Smart backtracking

Suppose we assigned (in this order):
{WA = B, SA = G, Q = R, T = R}
then pick NT

NT has all three colors neighboring it, so a
conflict is reached

In normally, we would backtrack and try to
change T (i.e. 4), but this was actually not
involved in the conflict (1, 2 & 3 were)

1

2

3

4

Complete-state CSP

So far we have been looking at incremental
search (adding one value at a time)

Complete-state searches are also possible in
CSPs and can be quite effective

A popular method is to find the min-conflict,
where you pick a random variable and update
the choice to be one that creates the least
number of conflicts

This works incredibly well for the n-queens
problem (partially due to dense solutions)

Complete-state CSP

As with most local searches (hill-climbing),
this method has issues with plateaus

This can be mitigated by avoiding recently
assigned variables (forces more exploration)

You can also apply weights to constraints and
update them based on how often they are
violated (to estimate which constraints are
more restrictive than others)

Complete-state CSP

Local search does not have “locally optimal”
solution our general search does

As we have a CSP, the “local optimal” may
occur, but if it is not 0 then we know we are
not satisfied (unless we searched the whole
space and find no goal)

This is almost as if we had an almost perfect
heuristic built in to the problem!

Complete-state CSP

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 42
	Slide 43
	Slide 44
	Slide 45

