THE LU FACTORIZATION [2.5]

$LU\ factorization:\ Motivation$

Suppose we have to solve many linear systems

$$Ax = b^{(1)}, \quad Ax = b^{(2)}, \quad \cdots, \quad Ax = b^{(p)}$$

where matrix $oldsymbol{A}$ is the same - but the right-hand sides are different

- ightharpoonup Can solve each of them by Gaussian Elimination separately ightharpoonup inefficient
- Cost?
- igwedge Can get the inverse A^{-1} then each solution is of the form $x^{(k)}=A^{-1}b^{(k)}$
- Cost? [Using method based on rref seen in Lec. Notes 8]

9-2 ______ Text: 2.5 – LU

- \blacktriangleright There is a 3rd option (Best): Exploit "LU factorization of A"
- Main result is this:

Gaussian elimination algorithm can provide as a by-product a *factorization* of A into the product of a lower triangular matrix L with ones on the diagonal, and an upper triangular matrix U:

$$A = LU$$

In addition:

This factorization is obtained at virtually no extra cost.

How would you solve systems with multiple right-hand sides using this? What does this approach cost?

Next: The LU factorization. Where does it come from and how to get it?

9-3 Text: 2.5 – LU

$LU\ factorization\ -\ Revisiting\ GE$

We now ignore the right-hand side in GE

Recall: Gaussian elimination amounts to performing n-1 successive Gaussian transformations, i.e., multiplications (to the left) by elementary matrices that have ones on the diagonal and the negatives of the multipliers in the column being eliminated.

ightharpoonup Set $A_0 \equiv A$. Then – results of the n-1 steps:

$$A_1 = E_1 A_0 \ A_2 = E_2 A_1 = E_2 E_1 A_0 \ A_3 = E_3 A_2 = E_3 E_2 E_1 A_0 \ \cdots = \cdots \ A_{n-1} = E_{n-1} E_{n-2} \cdots E_2 E_1 A_0$$

7-4 ______ Text: 2.5 – LU

- $ightharpoonup A_{n-1} \equiv U$ is an upper triangular matrix.
- lacksquare We have $oldsymbol{U}=oldsymbol{E}_{n-1}oldsymbol{E}_{n-2}\cdotsoldsymbol{E}_2oldsymbol{E}_1oldsymbol{A}$ or :

$$A = \underbrace{E_1^{-1} E_2^{-1} E_3^{-1} \cdots E_{n-1}^{-1}}_{L} U \equiv L U$$

- $ightharpoonup E_1, E_2, \cdots, E_{n-1}$ are all lower triangular matrices with ones on the diagonal.
- $lue{m}$ What is the inverse of a matrix E_j ?
- igwedge Each E_j^{-1} is lower triangular with ones on the diagonal.
- Show that the product of unit lower triangular matrices is unit lower triangular.
- $igwedge L=E_1^{-1}E_2^{-1}E_3^{-1}\cdots E_{n-1}^{-1}$ is lower triangular
- L has ones on the diagonal.

D-5 _____ Text: 2.5 – LU

A = LU with:

$$lacksquare$$
 In the end : $egin{aligned} L = E_1^{-1}E_2^{-1}E_3^{-1}\cdots E_{n-1}^{-1} \ U = A_{n-1} \end{aligned}$

 \triangleright Called the LU decomposition (or factorization) of A.

Notes:

- ightharpoonup L is Lower triangular, and has ones on the diagonal We say that it is unit lower triangular
- ightharpoonup U is the last matrix into which A is transformed from Gaussian elimination. It is upper triangular.
- \blacktriangleright We know how to get $m{U}$ [last matrix in GE]
- \blacktriangleright The main issue now is: How can we get $m{L}$?

9-6 ______ Text: 2.5 – LU

How do we get L?

- ightharpoonup Could we use: $L=E_1^{-1}E_2^{-1}E_3^{-1}\cdots E_{n-1}^{-1}$? Too complex!
- There is a simpler way:

Theorem. Assume that Gaussian elimination can terminate (no division by zero) and let U be the final triangular matrix obtained and L the lower triangular matrix with $l_{ii}=1$, and, for i>k, $l_{ik}=piv_{ik}$, the multiplier used to eliminate row i in step k. Then: A=LU.

- $ightharpoonup l_{kk}=1$ and for i
 eq k, $l_{ik}=$ multiplier a_{ik}/a_{kk} at k-th step of GE.
- The matrix A is the product of a unit lower triangular matrix L and an upper triangular matrix U.

9-7 ______ Text: 2.5 – LU

$LU\ factorization$ - an example

Example:
 Let
$$A = \begin{bmatrix} 4 & -2 & 2 \\ -2 & 5 & 3 \\ 2 & 3 & 9 \end{bmatrix}$$

Step 1 of GE uses the multipliers $l_{21}=-1/2$, $l_{31}=1/2$.

- lacksquare What is the matrix $oldsymbol{E_1}$ in this case?
- Resulting matrix: $A_1 = \begin{bmatrix} 4 & -2 & 2 \\ 0 & 4 & 4 \\ 0 & 4 & 8 \end{bmatrix}$

Step 2 of Gaussian Elimination uses the multiplier $l_{32} = 1$.

lue What is the matrix $oldsymbol{E_2}$?

9-8

Text: 2.5 – LU

$$lacksquare$$
 Resulting matrix $egin{array}{c|cccc} A_2 = & egin{array}{c|cccc} 4 & -2 & 2 \ 0 & 4 & 4 \ 0 & 0 & 4 \ \end{array} \equiv oldsymbol{U}$

Thus:
$$L = \begin{bmatrix} 1 & 0 & 0 \\ -1/2 & 1 & 0 \\ 1/2 & 1 & 1 \end{bmatrix}$$
 $U = \begin{bmatrix} 4 & -2 & 2 \\ 0 & 4 & 4 \\ 0 & 0 & 4 \end{bmatrix}$

- $lue{A}$ Verify that A=LU
- LU factorization of the matrix $m{A} = egin{pmatrix} 2 & 4 & 6 \ 1 & 5 & 9 \ 1 & 0 & -12 \end{pmatrix}$
- $lue{A}$ For the same A compute the 3rd column of A^{-1} .

9-9

- How would you compute the inverse of a matrix given its LU factorization?
- Show how to use the LU factorization to solve linear systems with the same matrix A and different right-hand sides b.
- True or false: "Computing the LU factorization of a matrix $m{A}$ involves more arithmetic operations than solving a linear system $m{A}m{x}=m{b}$ by Gaussian elimination"?

9-10 ______ Text: 2.5 – LU