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Introduction to linear mappings [1.8]

ä A transformation or function or mapping from Rn to Rm is a
rule which assigns to every x in Rn a vector T (x) in Rm.

ä Rn is called the domain
space of T and Rm the image
space or co-domain of T .
ä Notation:

T : Rn −→ Rm

R
n

R
m

l

x
T(x)l

T

Range

Image / Codomain

Domain

ä T (x) is the image of x under T
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Example: Take the mapping from R2 to R3:

T : R2 −→ R3

x =

(
x1

x2

)
−→T (x) =

x1 + x2

x1x2

x2
1 + x2

2


Example: Another mapping from R2 to R3:

T : R2 −→ R3

x =

(
x1

x2

)
−→T (x) =

 x1 + x2

x1 − x2

x1 + 5x2


- What is the main difference between these 2 examples?
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Definition A mapping T is linear if:

(i) T (u+ v) = T (u) + T (v) for u, v in the domain of T

(ii) T (αu) = αT (u) for all α ∈ R, all u in the domain of T

ä The mapping of the second example given above is linear - but
not for the first one.

ä If a mapping is linear then T (0) = 0. (Why?)

Observation: A mapping is linear if and only if

T (αu+ βv) = αT (u) + βT (v)

for all scalars α, β and all u, v in the domain of T .

- Prove this

ä Consequence:
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T (α1u1 + α2u2 + · · · + αpup) = α1T (u1) + α2T (u2) +
· · ·+ αpT (up)
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ä Given an m× n matrix A, consider the special mapping:

T : Rn −→Rm
x −→y = Ax

- Domain == ??; Image space == ??

ä From what we saw earlier [‘Properties of the matrix-vector prod-
uct’] such mappings are linear

ä As it turns out:

If T is linear, there exists a matrix A such that T (x) = Ax for
all x in Rn

ä In plain English: ‘A linear mapping can be represented by a
matvec’

ä A is the representation of T .
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ä How can we determine A?

ä Notation let

ej =



0
...
0
1
0
...
0


j − th row x =



α1

α2
...
αj
...
...
αn


• Write a vector x in Rn as x = α1e1 + · · ·+ αnen.

• Then note that T (x) = α1T (e1) + · · ·+ αnT (en)

• Therefore the columns of the matrix representation of T must be
the vectors T (ej) for j = 1, · · · , n
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- Let A be a square matrix. Is the mapping x→ x+Ax linear?
If so find the matrix associated with it.

- Same questions for the mapping x→ Ax + αx - where α is
a scalar.

- Express the following mapping from R3

to R2 in matrix/vector form:
y1 = 2x1 − x2 +1

y2 = x2 − x3 −2
ä Is this a linear mapping?

- Read Section 1.9 and explore the notions of onto mappings
(‘surjective’) and one-to-one mappings (‘injective’) in the text. You
must at least know the definitions.

- A mapping is onto if and only if ....

- A mapping is one-to-one if and only if ....
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Onto and one-to-one mappings

ä Let T a mapping – not necessarily
linear for now – from a domain set D
(subset of Rn) into an image set I
(subset of Rm)
ä The range of T is the set of all
possible vectors of the form T (x) for
x ∈ D.

D

I

R
m

R
n

●

x
T(x)●

T

Domain

Range

Image / Codomain

ä We say that T is onto if for every y in I there is at least one x
in D such that y = T (x).

ä In other words T is onto if the range of T equals all of I

ä We say that T is one-to-one if for every y in I there is at most
one x in D such that y = T (x).

ä In other words if T (u1) = T (u2) then we must have u1 = u2
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D

I
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1

1
T(x  )= T(x  )2
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m

R
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●
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Not one-to-one

ä Now consider linear mappings: let T represented by a matrix A

ä Now: Domain D is all of Rn and Image set I is all of Rm.

ä So: A is one-to-one when every y in Rm is ‘reached’ by A, i.e., if every y

in Rm can be written as y = Ax for some x ∈ Rn. Since Ax is a linear

combination of the columns of A, this means that:

ä A is onto iff the span of the columns of A equals Rm
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- Show that A is one-to-one iff the columns of A are linearly
independent.

- Find a 3× 3 example of a mapping that is not onto

- Finf a 3× 3 example of a mapping that is not one-to-one.
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MATRIX OPERATIONS [2.1]
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Matrix operations

ä If A is an m × n matrix (m rows and n columns) –then the
scalar entry in the ith row and jth column of A is denoted by aij
and is called the (i, j)-entry of A.

Column j

↓

Row i→


a11 · · · a1j · · · a1n

... ... ...
ai1 · · · aij · · · ain

... ... ...
am1 · · · amj · · · amn

 = A

↑ ↑ ↑
a1 aj an
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ä The number aij is the ith entry (from the top) of the jth column

ä Each column of A is a list of m real numbers, which identifies
a vector in Rm called a column vector

ä The columns are denoted by a1, ..., an, and the matrix A is
written as A = [a1, a2, · · · , an]
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ä The diagonal entries in an m× n matrix A are a11, a22, a33,
..., and they form the main diagonal of A.

ä A diagonal matrix is a matrix whose nondiagonal entries are zero

ä An important example is the n × n identity matrix, In (each
diagonal entry equals one) - Example:

I3 =

 1 0 0
0 1 0
0 0 1


ä Another important matrix is the zero matrix (all entries are 0).
It is denoted by O.
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Equality of two matrices: Two matricesA andB are equal if they
have the same size (they are both m × n) and if their entries are
all the same.

aij = bij for all i = 1, · · · ,m, j = 1, · · · , n

Sum of two matrices: If A and B are m×n matrices, then their
sum A+B is the m×n matrix whose entries are the sums of the
corresponding entries in A and B.

ä If we call C this sum we can write:

cij = aij + bij for all i = 1, · · · ,m, j = 1, · · · , n

-[
4 0 5
1 3 2

]
+

[
3 1 −3
0 2 −2

]
=??;

[
4 0 5
1 3 2

]
+

[
1 −3
2 −2

]
=??
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scalar multiple of a matrix If r is a scalar and A is a matrix, then
the scalar multiple rA is the matrix whose entries are r times the
corresponding entries in A.

(αA)ij = αaij for all i = 1, · · · ,m, j = 1, · · · , n

Theorem Let A, B, and C be matrices of the same size, and let
α and β be scalars. Then
• A+B = B +A
• (A+B) + C = A+ (B + C)
• A+ 0 = A
• α(A+B) = αA+ αB
• (α+ β)A = αA+ βA
• α(βA) = (αβ)A

- Prove all of the above equalities
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Matrix Multiplication

ä When a matrix B multiplies a vector x, it transforms x into the
vector Bx.

ä If this vector is then multiplied in turn by a matrixA, the resulting
vector is A(Bx).

x

Product by B Product by A

A(Bx)Bx

ä ThusA(Bx) is produced from x by a composition of mappings–
the linear transformations induced by B and A.

ä Note: x→ yA(Bx) is a linear mapping (prove this).
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Goal: to represent this composite mapping as a multiplication by
a single matrix, call it C for now, so that

A(Bx) = Cx

.

x

Product by B Product by A

Bx
A(Bx)

C 

ä Assume A is m× n, B is n× p , and x is in Rp

ä Denote the columns of B by b1, · · · , bp and the entries in x
by x1, · · · , xp. Then:

Bx = x1b1 + · · ·+ xpbp

7-19 Text: 2.1 – Matrix

7-19



ä By the linearity of
multiplication by A:

A(Bx) = A(x1b1) + · · ·+A(xpbp)

= x1Ab1 + · · ·+ xpAbp

ä The vector A(Bx) is a linear combination of Ab1, · · · , Abp,
using the entries in x as weights.

ä In matrix notation, this linear combination is written as

A(Bx) = [Ab1, Ab2, · · ·Abp].x

ä Thus, multiplication by [Ab1, Ab2, · · · , Abp] transforms x
into A(Bx).

ä Therefore the desired matrix C is the matrix

C = [Ab1, Ab2, · · · , Abp]

ä Denoted by AB
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Definition: If A is an m×n matrix, and if B is an n×p matrix
with columns b1, · · · , bp, then the productAB is the matrix whose
p columns are Ab1, · · · , Abp. That is:

AB = A[b1, b2, · · · , bp] = [Ab1, Ab2, · · · , Abp]

ä Important to remember that :

Multiplication of matrices corresponds to composition of linear
transformations.

- Operation count: How many operations are required to perform
product AB?
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- Compute AB when

A =

[
2 −1
1 3

]
B =

[
0 2 −1
1 3 −2

]
- Compute AB when

A =

2 −1 2 0
1 −2 1 0
3 −2 0 0

 B =


1 −1 −2
0 −2 2
2 1 −2
−1 3 2


- Can you compute AB when

A =

[
2 −1
1 3

]
B =

 0 2
1 3
−1 4

?
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Row-wise matrix product

ä Recall what we did with matrix-vector product to compute a
single entry of the vector Ax

ä Can we do the same thing here? i.e., How can we compute the
entry cij of the product AB without computing entire columns?

- Do this to compute entry (2, 2) in the first example above.

- Operation counts: Is more or less expensive to perform the matrix-
vector product row-wise instead of column-wise?
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Properties of matrix multiplication

Theorem Let A be an m × n matrix, and let B and C have
sizes for which the indicated sums and products are defined.
• A(BC) = (AB)C (associative law of multiplication)
• A(B + C) = AB +AC (left distributive law)
• (B + C)A = BA+ CA (right distributive law)
• α(AB) = (αA)B = A(αB) for any scalar α
• ImA = AIn = A (product with identity)

- If AB = AC then B = C (’simplification’) : True-False?

- If AB = 0 then either A = 0 or B = 0 : True or False?

- AB = BA : True or false??
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Square matrices. Matrix powers

ä Important particular case when n = m - so matrix is n× n

ä In this case if x is in Rn then y = Ax is also in Rn

ä AA is also a square n× n matrix and will be denoted by A2

ä More generally, the matrix Ak is the matrix which is the product
of k copies of A:

A1 = A; A2 = AA; · · · Ak = A · · ·A︸ ︷︷ ︸
k times

ä For consistency define A0 to be the identity: A0 = In,

- Al ×Ak = Al+k – Also true when k or l is zero.
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Transpose of a matrix

Given an m×n matrix A, the transpose of A is the n×m matrix,
denoted by AT , whose columns are formed from the corresponding
rows of A.

Theorem : Let A and B denote matrices whose sizes are
appropriate for the following sums and products.
• (AT)T = A
• (A+B)T = AT +BT

• (αA)T = αAT for any scalar α
• (AB)T = BTAT
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More on matrix produts

ä Recall: Product of the matrix A by the vector x:

y A x
β1
...
βj
...
βn

 =


a11 · · · a1j · · · a1n

... ... ...
ai1 · · · aij · · · ain

... ... ...
am1 · · · amj · · · amn



α1

...
αj
...
αn


= α1a1 + α2a2 + · · ·+ αnan

• x, y are vectors; y is the result of A× x.

• a1, a2, ..., an are the columns of A
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• α1, α2, ..., αn are the components of x [scalars]

• α1a1 is the first column of A multiplied by the scalar α1 which
is the first component of x.

• α1a1+α2a2+· · ·+αnan is a linear combination of a1, a2, · · · , an
with weights α1, α2, ..., αn.

ä This is the ‘column-wise’ form of the ‘matvec’

Example: A =

[
1 2 −1
0 −1 3

]
x =

−21
−3

 y =?

ä Result:

y = −2×
[
1
0

]
+ 1×

[
2
−1

]
− 3×

[
−1
3

]
=

[
3
−10

]
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ä Can get i-th component of the result y without the others:

βi = α1ai1 + α2ai2 + · · ·+ αnain

Example: In the above example extract β2

β2 = (−2)× 0 + (1)× (−1) + (−3)× (3) = −10

ä Can compute β1, β2, · · · , βm in this way.

ä This is the ‘row-wise’ form of the ‘matvec’
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Matrix-Matrix product

ä When A is m × n, B is n × p, the product AB of the
matrices A and B is the m× p matrix defined as

AB = [Ab1, Ab2, · · · , Abp]

ä Each Abj is a matrix-vector product: the product of A by the
j-th column of B. Matrix AB has dimension m× p

ä Can use what we know on matvecs to perform the product

1. Column form – In words: “The j-th column of AB is a linear
combination of the columns of A, with weights b1j, b2j, · · · , bnj ”
(entries of j-th col. of B)
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Example: A =

[
1 2 −1
0 −1 3

]
B =

−2 1
1 −2
−3 2

 AB =?

Result:
B =

[1 2 −1
0 −1 3

] −21
−3

 ,

[
1 2 −1
0 −1 3

]  1
−2
2


=

[
3 −6
−10 8

]
ä First column has been computed before: it is equal to:
(−2)*(col. 1 of A) + (1)*(col. 2 of A) + (−3)*(col. 3 of A)

ä Second column is equal to:
(1)*(col. 1 of A) + (−2)*(col. 2 of A) + (2)*(col. 3 of A)
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2. If we call C the matrix C = AB what is cij? From above:

cij = ai1b1j + ai2b2j + · · ·+ aikbkj + · · ·+ ainbnj

ä Fix j and run i −→ column-wise form just seen

3. Fix i and run j −→ row-wise form

Example: Get second row of AB in previous example.

c2j = a21b1j + a22b2j + a23b3j, j = 1, 2

• Can be read as : c2: = a21b1: + a22b2: + a23b3: , or in words:

row2 of C = a21 (row1 of B) + a22 (row2 of B) + a23 (row3 of B)
= 0 (row1 of B) + (-1) (row2 of B) + (3) (row3 of B)
= [−10 8]
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