
• CSCI 2033 • Spring 2018 •

ELEMENTARY COMPUTATIONAL LINEAR ALGEBRA

Class time : MWF 10:10-11:00am

Room : Blegen Hall 10

Instructor : Yousef Saad

URL : www-users.cselabs.umn.edu/classes/Spring-2018

/csci2033-morning/

January 16, 2018

1-0

About this class

ä Me: Yousef Saad

ä TAs: 1. Noah Lebovic
2. Jessica Lee
3. Abhishek Vashist

4. Shashanka Ubaru
5. Jungseok Hong

ä Office hours: refer to the class web-page

1-1 – Start

1-1

What you will learn and why

ä Course is about
“Basics of Numerical Linear Algebra”, a.k.a. “matrix computations”

ä Topic becoming increasingly important in Computer Science.

ä Many courses require some linear algebra

ä Course introduced in 2011 to fill a gap.

ä In the era of ‘big-data’ you need 1) statistics and 2) linear algebra

1-2 – Start

1-2

ä CSCI courses where csci2033 plays an essential role:

• CSCI 5302 – Analysis Num Algs *

• CSCI 5304 – Matrix Theory *

• CSCI 5607 – Computer Graphics I *

• CSCI 5512 – Artif Intelligence II

• CSCI 5521 – Intro to Machine Learning *

• CSCI 5551 – Robotics *

• CSCI 5525 – Machine Learning

• CSCI 5451 – Intro Parall Comput

* = csci2033 prerequisite for this course

1-3 – Start

1-3

ä Courses for which csci2033 can be helpful

• CSCI 5221 – Foundations of Adv Networking

• CSCI 5552 – Sensing/Estimation in Robotics

• CSCI 5561 – Computer Vision

• CSCI 5608 – Computer Graphics II

• CSCI 5619 – VR and 3D Interaction

• CSCI 5231 – Wireless and Sensor Networks

• CSCI 5481 – Computational Techs. Genomics

1-4 – Start

1-4

Objectives of this course

Set 1 Fundamentals of linear algebra

• Vector spaces, matrices, – [theoretical]

• Understanding bases, ranks, linear independence -

• Improve mathematical reasoning skills [proofs]

set 2 Computational linear algebra

• Understanding common computational problems

• Solving linear systems

• Get a working knowledge of matlab

• Understanding computational complexity

1-5 – Start

1-5

Set 3 Linear algebra in applications

• See how numerical linear algebra arises in a few computer
science -related applications.

1-6 – Start

1-6

The road ahead: Plan in a nutshell

equations Echelon Form

l

Linear
Independance

Column Spaces,
Null Spaces, Rank

Matrix inverse

Linear Mappings
Matrices, Matrix
operations

Othogonality and
Least−squares problems

Determinants

Eigenvalue problems
Singular Value Decomposition

Solving linear
Systems of
Equations

1

2

3

4
5

6

7

Vector

1-7 – Start

1-7

Math classes

ä Students who already have had Math 2243 or 2373 (Linear
Algebra and Differential Equations) or a similar version of a linear
algebra course :

There is a good overlap with this course [about 40-50%] - but the
courses are different..

You may be able to substitute 2033 for something else (by adding a
course) – See:

https://www.cs.umn.edu/academics/undergraduate/guide/cs-requirements/acceptable-substitutes

ä or UG adviser if you are in this situation.

1-8 – Start

1-8

https://www.cs.umn.edu/academics/undergraduate/guide/cs-requirements/acceptable-substitutes

Logistics:

ä We will use Moodle only to post grades

ä Main class web-site is :

www-users.cselabs.umn.edu/classes/Spring-2018/

csci2033-morning/

ä There you will find :

• Lecture notes

• Homeworks [and solutions]

• Additional exercises [do before indicated class]

• .. and more

1-9 – Start

1-9

Three Recitation Sections:

sec 002 – which we will call Sec. 2 - 10:10–11:00am

sec 003 – which we will call Sec. 3 - 11:15–12:05pm

sec 004 – which we will call Sec. 4 - 12:20–1:10pm

ä All in Amundson Hall 240

...

1-10 – Start

1-10

About lecture notes:

ä Lecture notes will be posted on the class web-site – usually before
the lecture. [if I am late do not hesitate to send me e-mail]

ä Review them and try to get some understanding if possible before
class.

ä Read the relevant section (s) in the text

ä Lecture note sets are grouped by topics (sections in the textbook)
rather than by lecture.

ä In the notes the symbol - indicates suggested easy exercises or
questions – often [not always] done in class.

1-11 – Start

1-11

In-class Practice Exercises

ä Posted in advance – see HWs web-page

ä You should do them before class (!Important). No need to turn
in anything. But...

ä ... beware that quizzes could be quite similar

ä I will often start the class with these practice exercises

ä The quizzes are like short mid-terms. There will be 8 of them [
20mn each]

1-12 – Start

1-12

Matlab

ä You will need to use matlab for testing algorithms.

ä Limited lecture notes on matlab +

ä Other documents will be posted in the matlab web-site.

ä Most important:

ä .. I post the matlab diaries used for the demos (if any).

ä First few recitations will cover tutorials on matlab

• If you do not know matlab at all and have difficulties with it see
me or one of the TAs at office hours. This ought to help get you
started.

1-13 – Start

1-13

One final point on lecture notes

ä These notes are ‘evolving’. You can help make them better –
report errors and provide feedback.

ä There will be much more going on in the classroom - so the notes
are not enough for studying! Sometimes they are used as a summary.

ä Recommendation: start with lecture notes - then study relevant
parts in text.

ä There are a few topics that are not covered well in the text
(e.g., complexity). Rely on lectures and the notes (when available)
for these.

1-14 – Start

1-14

Introduction. Math Background

ä We will often need proofs in this class.

ä A proof is a logical argument to show that a given statement in
true

ä One of the stated goals of csci2033 is to improve mathematical
reasoning skills

ä You should be able to prove simple statements

ä Here are the most common types of proofs

1-15 – intro

1-15

Proof by contradiction:

Idea: prove that the contrary of the statement implies an impossible
(’absurd’) conclusion

Example:

- Show that
√
2 is not a rational number [famous proof dating

back to Pythagoras]

Proof: Assume the contrary is true. Then
√
2 = p/q. If p and q

can be divided by the same integer divide them both by this integer.
Now p and q cannot be both even. The equality

√
2 = p/q implies

p2 = 2q2. This means p2 is even. However p is also even because
the square of an odd number is odd. We now write p = 2k. Then
4k2 = 2q2. Hence q2 = 2k2 and so q is also even. Contradiction.

1-16 – intro

1-16

Proof by induction

Problem: to prove that a certain property Pn is true for all n.

Method:

(a) Base: Show that Pinit is true

(b) Induction Hypothesis: Assume that Pn is true for some n (n ≥
init). With this assumption prove that Pn+1 is true..

ä Important point: A big part of the proof is to clearly state Pn

Example: Show that 1 + 2 + 3 + · · ·+ n = n(n+ 1)/2

- [Challenge] Show:

12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6

1-17 – intro

1-17

By counter-example [to prove a statement is not true]

Example: All students in MN are above average.

Proof by construction (constructive proof)

The statement is that some object exists. We need to construct this
object.

By a purely logical argument

Example:

ä Pythagoras’ theorem from
a purely geometric argument

a

b

b

b

b

a

a

a
c

c

c

c

Behold!

- Show that for two sets A,B we have A ∪B = A ∩B

1-18 – intro

1-18

A few terms/symbols used

x ∈ X x belongs to set X

∀x for all x∑n
i=1 Summation from i = 1 to i = n

A→ B Assertion A implies assertion B

A iff B A is true If and only if B is true [i.e., A → B and
B → A]

ä Greek letters α , β, γ, ... represent scalars

ä Lower case latin letters u, v, ... often represent vectors

ä Upper case letters A,B, .. often represent matrices

ä More will be introduced on the way

1-19 – intro

1-19

Algorithms - complexity

ä Not emphasized in text

- Find (google) the origin of the word ‘Algorithm’

An algorithm is a sequence of instructions given to a machine
(typically a computer) to solve a given problem

An example: Finding the square root of a number.

Method: calculate

xnew = 0.5

(
xold +

a

xold

)
... until xnew no longer changes much. Start with x = a

1-20 – intro

1-20

ä There are different ways of implementing this

ä Some ways may be more ‘economical’ than others

ä Some ways will lead to more numerical errors than others [not in
this particular case]

xn = a;
while(abs(xn*xn - a) > 1.e-06 * a)

xn = 0.5*(xn+a/xn)
end

- Try this for a = 5. How many steps are needed? What is the
total number of operations (+,*,/)?

1-21 – intro

1-21

The issue of cost (‘complexity’)

ä For small problems cost may not be important - except when the
operation is repeated many times.

ä For systems of equations in the thousands, then the algorithm
could make a huge difference.

What to count?

• Memory copy / move.

• Comparisons of numbers (integers, floating-points)

• Floating point operations: add, multiply, divide (more expensive)

• Intrinsic functions: sin, cos, exp,√ , etc.. a few times more
expensive than add/ multiply.

1-22 – intro

1-22

Example: Assume we have 4 algorithms whose costs (number

of operations) are n3

6
, n

2

2
, n log2n, and n respectively, where n is

the ‘size’ of the problem. Compare the times for the 4 algorithms to
execute when n = 1000

Answer: [assume one operation costs 1µsec]

n3

6
→ 109

6
µsec = 1000

6
sec ≈ 2.78mn

n2

2
→ 106

2
µsec ≈ 1

2
sec.

n logn → 103 logn µsec ≈ 103 × 10 µsec = 10ms

n → 1 ms.

ä In matrix computations (this course) we only count floating point
operations: (∗,+, /)

1-23 – intro

1-23

ä Cost = number of operations to complete a given algorithm =
function of n the problem size

ä Will find something like [example]

C(n) = 2n3 + 6n2 + 3n

ä We are interested in cases with large values of n

ä Major point: only the leading term 2n3 matters - because the
rest is small (relatively to 2n3) when n is large.

ä We will say that the cost is of order 2n3 or even order n3

[meaning that it increases like the cube of n as n increases]

1-24 – intro

1-24

- Compare C(100), C(200) and 8C(100). Explain

- Suppose it takes 1 sec. run the algorithm for a certain value of
n (large), how long would it take to run the same algorithm on a
problem of size 2n?

1-25 – intro

1-25

LINEAR EQATIONS [1.1] +

1-26

Linear systems

ä A linear equation in the variables x1, · · · , xn is an equation
that can be written in the form

a1x1 + a2x2 + · · ·+ anxn = b,

ä b and the coefficients a1, · · · , an are known real or complex
numbers.

Example: x1 + 2x2 = −1

ä In the above equation x1 and x2 are the unknowns or variables.
The equation is satisfied when x1 = 1, x2 = −1.

ä It is also satisfied for x1 = −3, x2 = ?

1-27 Text: 1.1 – Systems1

1-27

ä A system of linear equations (or a linear system) is a collection
of one or more linear equations involving the same variables – say,
x1,, xn.

ä A solution of the system is a list (s1, s2, ..., sn) of values for
x1, x2,, xn, respectively, which make the equations satisfied.

Example: Here is a system involving 2 unknowns:{
2x1 +x2 = 4
−x1 +2x2 = 3

ä The values x1 = 1, x2 = 2 satisfy the system of equations.
s1 = 1, s2 = 2 is a solution.

ä The equation 2x1 + x2 = 4 represents a line in the plane.
−x2 + 2x2 = 3 represents another line. The solution represents
the point where the two lines intersect.

1-28 Text: 1.1 – Systems1

1-28

Example:

Three winners of a competition labeled G,S,B (for gold, silver,
bronze) are to share as a prize 30 coins. The conditions are that 1)
G’s share of the coins should equal the shares of S and B combined
and 2) The difference between the shares of G and S equals the
difference between the shares of S and B.

ä How many coins should each of G,S,B receive?

ä Should formulate as a system of equations:

• 3 conditions→ result will be 3 equations

• 3 unknowns (# coins for each of winner)

1-29 Text: 1.1 – Systems1

1-29

ä Let

x1 = number of coins to be won by G,
x2 = number of coins to be won by S, and
x3 = number of coins to be won by B

ä The conditions give us 3 equations which are:

1) Total number of coins = 30
2) G’s share = sum of S and B
3) differences G -S same as S-B

x1+x2+x3 = 30
x1 = x2 + x3

x1−x2 = x2−x3

System of equations:

 x1 +x2 +x3 = 30
x1 −x2 −x3 = 0
x1 −2x2 +x3 = 0

ä We will see later how to solve this system

ä The set s1 = 15, s2 = 10, s3 = 5 is a solution

ä It is the only solution

1-30 Text: 1.1 – Systems1

1-30

ä The set of all possible solutions is called the solution set of the
linear system.

ä Two linear systems are called equivalent if they have the same
solution set.

ä A system of linear
equations can have:

1. no solution, or

2. exactly one solution, or

3. infinitely many solutions.

[The above result will be seen in detail later in this class]

Definition: A system of linear equations is said to be inconsistent
if it has no solution (Case 1 above). It is consistent if it has at least
one solution (Case 2 or Case 3 above).

1-31 Text: 1.1 – Systems1

1-31

Example: Consider the following three systems of equations:

{
x1 −x2 = 1
x1 +2x2 = 4

1

2

x

−
 x

 =

 1

1
2

x + 2 x = 4

2

1

{
x1 −x2 = 1

−2x1 +2x2 = 2

−
 2

 x

 +

 2
 x

=
 2

1

2

1

2

x

−
 x

 =

 1

{
x1 −x2 = 1

−2x1 +2x2 = −2

−
2
 x

 +

 2
 x

 =

 −
2

1

2

1

2

x

−
 x

 =

 1

Exactly one solution No solution Inifinitely many solutions

Consistent Inconsistent Consistent

1-32 Text: 1.1 – Systems1

1-32

Matrix Notation

ä The essential information of a linear system is recorded compactly
in a rectangular array called a matrix.

ä For the following
system of equations:

 x1 +x2 +x3 = 30
x1 −x2 −x3 = 0
x1 −2x2 +x3 = 0

The array to the
right is called the
coefficient matrix of
the system:

1 1 1
1 −1 −1
1 −2 1

 And the
right-hand
side is:

300
0


ä An augmented matrix of a system consists of the coefficient
matrix with the R.H.S. added as a last column

ä Note: R.H.S. or RHS = short for right-hand side column.

1-33 Text: 1.1 – Systems1

1-33

ä For the above system the augmented matrix is

1 1 1 30
1 −1 −1 0
1 −2 1 0

or

 1 1 1 30
1 −1 −1 0
1 −2 1 0


ä You can think of the array on the left as the set of 3 “rows” each
representing an equation:

x1 x2 x3 b1
1 1 1 30

x1 x2 x3 b2
1 −1 −1 0

x1 x2 x3 b3
1 −2 1 0

ä To solve systems of equations we manipulate these “rows” to get
equivalent equations that are easier to solve.

1-34 Text: 1.1 – Systems1

1-34

- Can we add two equations/rows? Add equations 1 and 2. What
do you get?

- Now add equations 2 and 3. What do you get? Can you compute
x2?

- Finally obtain x3

ä This shows an “ad-hoc” [intuitive] way of manipulating equations
to solve the system.

ä Gaussian Elimination [coming shortly] shows a systematic way

ä Basic Strategy: replace a system with an equivalent system (i.e.,
one with the same solution set) that is easier to solve.

1-35 Text: 1.1 – Systems1

1-35

Terminology on matrices

ä An m × n matrix is a rectangular array of numbers with m
rows and n columns. We say that A is of size m×n (The number
of rows always comes first.)

ä In matlab: [m,n] = size(A) returns the size of A

ä If m = n the matrix is said to be square otherwise it is
rectangular

ä The case when n = 1 is a special case where the matrix consists
of just one column. The matrix then becomes a vector and this will
be revisited later. The right-hand side column is one such vector.

ä Thus a linear system consists of a coefficient matrix A and a
right-hand side vector b.

1-36 Text: 1.1 – Systems1

1-36

Equivalent systems

We do not change the solution set of a linear system if we

* Permute two equations

* Multiply a whole equation by a nonzero scalar

* Add an equation to another.

ä Text: Two systems are row-equivalent if one is obtained from
the other by a succession of the above operations

ä Eliminating an unknown consists of combining
rows so that the coefficients for that unknown in the
equations become zero.
ä Gaussian Elimination: performs eliminations to
reduce the system to a “triangular form”

∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

1-37 Text: 1.1 – Systems1

1-37

Triangular linear systems are easy to solve

Example:

 2x1 + 4x2 + 4x3 = 2
5x2 − 2x3 = 1

2x3 = 4

2 4 4 2
0 5 −2 1
0 0 2 4

ä One equation can be triv-
ially solved: the last one.

x3 = 2

ä x3 is known we can now solve the 2nd equation:

5x2 − 2x3 = 1 → 5x2 − 2× 2 = 1 → x2 = 1

ä Finally x1 can be determined similarly:

2x1 + 4× 1 + 4× 2 = 2→ · · · → x1 = −5

1-38 Text: 1.1 – Systems1

1-38

Triangular linear systems - Algorithm

ä Upper triangular system of size n

ALGORITHM : 1 Back-Substitution algorithm

For i = n : −1 : 1 do:
t := bi
For j = i+ 1 : n do
t := t− aijxj

End
xi = t/aii

End

ä We must require that each aii 6= 0

1-39 Text: 1.1 – Systems1

1-39

x1 x2 x2 x4 x5 b

a11 a12 a13 a14 a15 b1
a22 a23 a24 a25 b2

a33 a34 a35 b3
a44 a45 b4

a55 b5

i = 5
i = 4
i = 3
i = 2
i = 1

x5 = b5/a55

x4 = [b4 − a45x5]/a44

x3 = [b3 − a34x4 − a35x5]/a33

x2 = [b2 − a23x3 − a24x4 − a25x5]/a22

x1 = [b2 − a12x2 − a13x3 − a14x4 − a15x5]/a11

ä For example, when i = 3, x4, x5 are already known, so

a33x3 + a34x4 + a35x5︸ ︷︷ ︸
known

= b3→ x3 = b3−a34x4−a35x5

a33

1-40 Text: 1.1 – Systems1

1-40

- Write a matlab version of the algorithm

- Cost: How many operations (+, ∗, /) are needed altogether to
solve a triangular system? [Hint: visualize the operations on the
augmented array. What does step i cost?]

- If n is large and the n× n system is solved in 2 seconds, how
long would it take you to solve a new system of size (2n)× (2n)?

1-41 Text: 1.1 – Systems1

1-41

