CSci 2033, S'18	Homework # 1	Due Date: Feb 7, 2018
-----------------	--------------	-----------------------

1. Find the elementary row operation that transforms the frist matrix into the second and then the inverse row operation that transforms the second matrix into the first:

[2	1	4	0	$\lceil 2 \rceil$	1	4	0]
0	1	2	-3	0	1	2	-3
0	3	10	-7	0	0	4	2

- 2. The parabola $y = a + bx + cx^2$ goes through the points (x, y) = (1, 4), (x, y) = (2, 8) and (x, y) = (3, 14). Formulate a linear system of equations for a, b, c and find its solution with Gaussian elimination.
- 3. Find solutions (if any) of the following system of equations [Explain your steps and conclusions]:

$$\begin{aligned} x_1 - 5x_2 + 4x_3 &= -3\\ 2x_1 - 7x_2 + 3x_3 &= -2\\ -2x_1 + x_2 + 7x_3 &= -1 \end{aligned}$$

4. Consider the following system of linear equations

$$x_1 - 2x_2 - 2x_3 = 2$$

$$x_1 + 2x_2 + x_3 = 3$$

$$3x_1 + 2x_2 = 8$$

- a) Express this system in an augmented matrix form
- b) Transform the system into *standard row echelon* form (Show a step-by-step execution)
- c) Transform the system into reduced row echelon form (Show a step-by-step execution)
- d) What is the solution set of this system? Is the solution unique?
- 5. Same question as in the previous one but the linear system is modified by changing the last equation into $-2x_1 + x_2 + 7x_3 = -6$
- 6. Convert the following augmented matrices into reduced echelon form, then find the solution sets in each case, identifying the free variables if any: (Use Matlab for verification)

3	-3	6	0	5	4	2	6	5	4	1	0
1	2	-1	2	1	-1	4	0	1	-1	2	0
0	-3	3	-2	1	2	4	2	1	2	-1	2

7. Fertilizers are mixtures containing specified amounts of 3 elements: nitrogen (N), phosphorus (P), and potassium (K). A garden store carries three blends F1 , F2 , F3 that have the following compositions:

	N	Р	Κ
F1	30	10	10
F2	20	20	30
F3	10	20	20

For example, F1 has 30% N, 10% P, 10% K (and 50% other elements). For those familiar with farming or gardening this is written as an N-P-K ratio of 30-10-10. What matters is the amount of each of these components relative to the others (Thus, 15-5-10 is *essentially* the same as 30-10-20).

- (a) A customer has a special need for a fertilizer with proportions of N-P-K equal to 20-15-15. Find how the store should mix F1, F2, F3 to produce a mixture with composition required by the customer. Formulate this problem as a system of linear equations and solve it using matlab ('backslash').
- (b) Assume that a customer has a special need for a fertilizer with the composition N-P-K equal to 25-5-15. Is there a solution? Is it always possible to blend the 3 fertilizers to reach *any* desired composition? Discuss.
- 8. (It will be helpful to first look at Example 5 of Section 1.3) Let $A = \begin{bmatrix} 2 & 0 & 6 \\ -1 & 8 & -3 \\ 1 & -2 & 3 \end{bmatrix}$, let

 $b = \begin{bmatrix} 10\\3\\7 \end{bmatrix}$, and let W be the set of all linear combinations of the columns of A. (a) is b in W? (b) Is the second column of A is in W?

9. The figure on the right represents the traffic entering and leaving a roundabout road junction. Such roundabouts ensure a continuous and smooth flow at road junctions and are very popular in Europe. The numbers on each road entering/leaving the roundabout and the variables x₁, ..., x₈ ¹ indicate the number of vechicle per hour on each of the related sections.
(a) By stating a 'law of conservation of vehicles' at each

of the 8 points A, B, ..., H, construct a linear system of 8 equations satisfied by the eight unknowns x_1, \dots, x_8 . What is the general solution of the system?

[Hint: Once you write the system you can use matlab's RREF to answer the question]

(b) What is the minimum flow possible over x_1 ?

(c) Find a solution of the system that gives $x_4 = 40$. Are there any solutions for which x_4 is equal to zero? Explain why or why not.

(d) Find a solution of the system for which x_6 is the double of x_4 .

10. The following matlab commands will produce 3 figures (run it on your machine):

```
XY = [1 3 2 1; 1 2 4 1];
plot(XY(1,:),XY(2,:));
hold
XY = 0.7*XY;
plot(XY(1,:),XY(2,:));
XY = 0.7*XY;
plot(XY(1,:),XY(2,:));
```

(a) Explain the commands used to produce these figures (what is XY, what does 'hold' do, what happens at the command XY = 0.7 * XY, etc.).

(b) Next, find out how to have plots with a different color for each of the 3 figure (blue, red, green). Generate a new plot with these colors. [for (b) Provide a print-out of your answer and the corresponding figure with 3 colors]