
Information & Entropy1. Daniel Boley

1 Information

We have 2 kinds of vehicles, cars and trucks, and 2 countries of origin: foreign and domestic.
Denote the basic probabalitities pc = pr(car), pc̄ = pr(truck), pf = pr(foreign), pf̄ =
pr(domestic), the joint probabilities, pfc = pr(foreign&car), etc. such that (for example)
pfc + pf̄ c = pc, etc., the conditional probabilities, q = pf |c = pr(foreign|car), r = pf |c̄ =
pr(foreign|truck), etc. We have the relations pc + pc̄ = 1, pf + pf̄ = 1, pf |c + pf̄ |c = 1, etc.,
and pfc = pf |cpc = qpc, etc.

Let I(p) be the information obtained when learning of an event which has probability
p. For example, if we have an object that we know is a vehicle, and we discover that it is
a car, then the information we obtain from this discovery is I(pc). We make the following
assumptions:

1. I(p) > 0 for all p: 0 < p < 1.

2. If p = 1, the event is absolutely certain, so I(1) = 0.

3. I(p) is a smooth function of only the numerical probability p.

4. If two events occur in sequence, then the amount of information is additive. If the first
event has probability p, and the second event has probability q assuming the first event
has occured, then the total information is the sum of the information learned from the
first event, plus the additional information learned from the second event once the first
event is known.

The last assumption can be applied to the car example. Upon learning that a vehicle is
a car, we obtain I(pc) amount of information. Subsequently we learn that the car is foreign,
obtaining an additional I(q) amount of the information. This should equal the total amount
of information we would obtain if we learned all at once that the vehicle was a foreign car,
namely I(pfc) = I(pcpf |c) = I(pcq). This relation should hold regardless of the specific
numerical values of pc and q, but should depend only on the numerical values of pc and q.
So we have the relation

I(pq) = I(p) + I(q) for any probability values p, q. (1)

What kind of function obeys a relation such as (1)? The answer is a logarithmic function.
Since the p’s are less than 1, and I(p) ≥ 0, it must be that I(p) = − log p, where log is the
usual logarithm in some arbitrary base. The proof that I(p) must be a logarithm function
depends on assuming (1) holds for any positive numbers, and then first plugging in integer
values, then rationals, and then invoking continuity.

12019-10-8-130

1

Here are a sample of the steps in this proof. Assume (1) holds for all positive numbers.
First I(p · 1) = I(p) + I(1)∀p implies that I(1) = 0. Then (1) implies relations like I(b2) =
I(b) + I(b), I(bk) = kI(b), kI(bl) = I(bkl) = lI(bk), which implies I(bk/l) = (k/l)I(b),
for arbitrary positive integers k, l and any positive b. Then we invoke continuity to get
I(bs) = sI(b), for any real s ≥ 0. There is one degree of freedom left, namely the scaling
of I, which is set by fixing the value of I(0.5), or equivalently choosing the base of the
logarithm. The usual custom is to use logarithms base 2, yielding I(.5) = 1.

2 Entropy

While sitting by the side of a freeway, you watch n = 10 zillion objects pass by during the
day. You know that every object passing by is a vehicle, that npc of those vehicles are cars,
that npfc vehicles are foreign cars, etc. We group all the vehicles other than cars in the
complementary category c̄ and call them trucks (even if they are really buses). What is
the average amount of information you learn by recognizing whether each object going by
is a car or a truck, is foreign or domestic? The key word here is “average”. We need an
expectation. If all we can distinguish is cars vs trucks, then the total amount of information
we learn during the day is equal to the number of cars times the information learned per car
plus the number of trucks times the amount of information learned per truck:

total information = npcI(pc) + npc̄I(pc̄).

Divide by n to obtain the average information learned per vehicle:

average information ≡ Hc = pcI(pc) + ptI(pc̄) = −pc log pc − pc̄ log pc̄. (2)

This quantity is defined as the entropy. It is seen to be a statistical average over many
instances. It is also symmetric: Hc = Hc̄.

3 Mutual Information

We actually have three entropies in the current situation: (A) the entropy of cars versus
trucks ignoring the country of origin, (B) the entropy of country of origin ignoring the type
of vehicle, and (C) the entropy of the 4 subcategories, foreign cars, domestic cars, foreign
trucks, domestic trucks. These entropies are, respectively,

cars vs trucks Hc = −pc log pc − pc̄ log pc̄
foreign vs domestic Hf = −pf log pf − pf̄ log pf̄
4 subcategories Hfc = −pfc log pfc − pf̄ c log pf̄ c − pfc̄ log pfc̄ − pf̄ c̄ log pf̄ c̄,

where Hfc is called the joint entropy.
While watching all the vehicle pass by, we learn Hc amount of information on average

by distinguishing cars from trucks. We slowly learn to distinguish foreign from domestic,

2

learning on the average Hfc −Hc additional information. But this could be very little if, for
example, almost all the cars were foreign and almost all the trucks were domestic. In this
case, we could almost just guess the country of origin just knowing the type of vehicle. The
quantity Hfc −Hc is called the conditional entropy and has the following expression:

Hf |c
def

= conditional entropy
def

= Hfc −Hc

= [−pfc log pfc − pf̄ c log pf̄ c − pfc̄ log pfc̄ − pf̄ c̄ log pf̄ c̄]
− [−pc log pc − pc̄ log pc̄]

= [−pfc log pfc − pf̄ c log pf̄ c − pfc̄ log pfc̄ − pf̄ c̄ log pf̄ c̄]
− [−pfc log pc − pf̄ c log pc − pfc̄ log pc̄ − pf̄ c̄ log pc̄]

= [−pfc log
pfc
pc

− pf̄ c log
pf̄ c
pc

− pfc̄ log
pfc̄
pc̄

− pf̄ c̄ log
pf̄ c̄
pc̄

]

= pc[−pf |c log pf |c − pf̄ |c log pf̄ |c] + pc̄[−pf |c̄ log pf |c̄ − pf̄ |c̄ log pf̄ |c̄]
= pcHf/c + pc̄Hf/c̄,

where Hf/c, Hf/c̄ denote the local entropies of “foreign-ness” local to the class of cars and
to the class of trucks, respectively. Please note that the conditional entropy, Hf |c, is the
weighted sum of these local entropies, each weighted by the prior probability that one is in
the class where that local entropy applies.

If the two attributes, car vs truck and foreign vs domestic, were independent, then we
would expect that learning whether a vehicle is foreign would yield the same amount of
information whether or not we knew that the vehicle was a car. That is, we would expect
Hf |c = Hf . On the other hand, if we had the situation where almost all the cars were foreign
and almost all the trucks domestic, then we would expect that Hf |c would be very small,
especially when compared to Hf . We can measure this with the difference Hf |c −Hf , which
takes on the following expression:

Mfc
def

= mutual information
def

= Hf −Hf |c
= [−pf log pf − pf̄ log pf̄]

− [−pfc log
pfc
pc

− pf̄ c log
pf̄ c
pc

− pfc̄ log
pfc̄
pc̄

− pf̄ c̄ log
pf̄ c̄
pc̄

]

= pfc log
pfc
pcpf

+ pf̄ c log
pf̄ c
pcpf̄

+ pfc̄ log
pfc̄
pc̄pf

+ pf̄ c̄ log
pf̄ c̄
pc̄pf̄

.

This quantity is called the mutual information . Notice that it equals

Mfc = Hf +Hc −Hfc

and is symmetric in the probabilities of f , c. When f and c are independent, the terms
under the log’s are all equal to 1, hence Mf = 0. When f is completely determined by c and
viceversa, then the conditional entropies take on the value Hc|f = Hf |c = 0 and the mutual
information takes on the value Mfc = Hf = Hc. In general, the form of the expressions for
the various quantities implies naturally that all of the quantities Mf , Hc, Hf , Hfc, Hf |c, Hc|f ,
are all non-negative, and the pure entropies for f and c are bounded by − log 1/2 (occuring
when p = 1/2). This implies that the these values must lie in the ranges (some of these

3

inequalities result from the fact that we have binary categories):

0 < Hc < log 2
0 < Hf < log 2
0 < Hfc < Hc +Hf

0 < Hf |c < Hf

0 < Hc|f < Hc

0 < Mfc < min{Hc, Hf}.

4 Relative Entropy

Suppose we spent yesterday recording vehicles and using the numbers to estimate the various
probabilities of cars vs trucks, foreign vs domestic. Today, we watch the vehicles go by. What
is the change in the average information we get from classifying the individual vehicles, due
to a change in their overall probabilities? If we see a vehicle and identify it as a car, then
we believe we have gotten I(pc) = − log pc amount of information. We attach this amount
of pseudo-information to each individual car. Likewise, we attach I(pc̄) amount of pseudo-
information to each individual truck. However, today is Sunday and there are fewer trucks
on the road. So the actual probability of a car is qc. Therefore, after m vehicles have passed
by, we have attached a total amount of pseudo-information of

mEq(− log pc) = −mqc log pc −mqc̄ log pc̄, (3)

that is, m times the average amount of pseudo-information attached per vehicle. Here Eq
denotes the expectation under the probabality distribution q. The difference between the
pseudo-information attached under the naive assumption that the probability was pc and
the actual amount of information per vehicle under the new probability is

mEq(− log p)−mH(q) = mqc log qc +mqc̄ log qc̄ −mqc log pc −mqc̄ log pc̄

= mqc log
qc
pc

+mqc̄ log
qc̄
pc̄

(4)

The quantity KL(q||p) def

= Eq(− log p) − H(q) is called the relative entropy or the Kullback-
Leibler “distance” between two probability distributions q and p. This quantity is zero
exactly when q = p, and is positive when q 6= p, but it might not be finite, and it is not
symmetric in q and p. To see this, let

f(pc)
def

= KL(q||p) = qc log qc + (1− qc) log(1− qc)− qc log pc − (1− qc) log(1− pc)

be defined by the formula (4). Then a short calculation yields the derivative:

f ′(pc) =
d

dpc
f(pc) =

pc − qc
pc(1− pc)

.

It is easily seen that
f ′(pc) > 0 if pc > qc
f ′(pc) = 0 if pc = qc
f ′(pc) < 0 if pc < qc

4

so the global minimum on [0, 1] is achieved at pc = qc. Furthermore, if pc = qc then f(pc) = 0,
but if pc = 0 or pc = 1 (and pc 6= qc), then f(pc) = ∞.

5 Twenty Questions

We are given N possible items xk each with its own probabality pk of occurence, for k =
1, . . . , N . We observe a sequence of such items. This could represent strings drawn from
an alphabet of N characters. In the following we relate the entropy of the probability
distribution {pk}Nk=1 to the minimum description length needed to encode this sequence
when subjected to compression.

To identify each individual item in a sequence, we ask a series of yes/no questions. The
result is a binary tree T of outcomes. The root corresponds to the first question, the left
child corresponds to a NO answer, the right child corresponds to a YES answer. Each child
node corresponds to another yes/no question which leads to the left if the answer is no and
to the right if the answer is yes. So after two questions, we can end up at one of four nodes.
Obtaining an answer to each question corresponds to descending one level in the tree. This
continues until we reach a leaf of the tree, which corresponds to identifying the specific item.
The tree has N leaves, each leaf corresponding to a specific item.

The cost associated with each item is the number of questions needed to identify it, i.e.
the number of links that must be traversed within the tree from the root to the corresponding
leaf. The expected total cost for all the items is the sum of all the costs, each weighted by
the corresponding probablity:

E(cost(T)) =
N
∑

k=1

pkcost(xk). (5)

To prove some properties of this cost function, we need an intermediate result. Define the
functional

q(xk) =
(

1/2
)cost(xk)

and define the corresponding functional over the entire tree to be the total of all the q-values
summed over all the leaves: q(T) =

∑N
1 q(xk). We will show that that q(T) = 1 is a constant

for all binary trees, by induction.
A tree T1 consisting of just a single node has an q-value of q(T1) = q((root)) = (1/2)

0
= 1.

Suppose T’s root has a left subtree L and a right subtree R. Then each path leading from
T’s root to a leaf of L is one more than the length of the path from L’s root to that same
leaf, so that we have one more power of 1/2 in the q-value from T’s root, compared to the
q-value from L’s root. The analogous property holds for the leaves of R. Hence

q(T) =
∑

xk∈L
qT(xk) +

∑

xk∈R
qT(xk) =

1/2
∑

xk∈L
qL(xk) +

1/2
∑

xk∈R
qR(xk) =

1/2(q(L) + q(R)), (6)

where we use the notation xk ∈ L to mean xk is a leaf of tree L, qL(xk) to denote the q-value
of xk as a leaf of the tree L, etc. We can now apply the induction argument to fix the q-value

5

for all binary trees. The property q(T) = 1 holds for trees with just 1 level of nodes (i.e. a
single node). If q(T) = 1 holds for all trees up to l levels, then formula (6) implies it also
holds for trees with l + 1 levels.

So, given a binary tree T with leaves xk, k = 1, . . . , N , we have established that corre-
sponding q-values satisfy

q(xk) > 0 and
∑

k

q(xk) = 1. (7)

We use the shorthand qk = q(xk), so log2 qk is the length [cost] of the path from the root of
the tree to the k-th leaf. The expected cost for all the items [leaves] can now be written

E(cost(T)) = −
N
∑

k=1

pk log2(qk) (8)

The probabilities pk are given to us, but we have the choice to design the tree to minimize
this average cost. That is, we can choose the qk’s to minimize the cost functional (8) subject
to conditions (7). What is the optimal choice? In the previous section, we showed that
qk = pk is the optimal choice when N = 2. A simple (but cluttered) “calculus of variations”
argument shows the same holds in the general case2. Of course, we are restricted to q-values
such that log2 q is an integer, because − log2 q is a path length in the tree. But if N is very
large, we can set the q-values to be very close to the theoretical optimum.

6 Relation to Binary decisions: Cars vs Trucks

For each vehicle, we get to ask one question: Car, yes or no? That would seem to require one
question per vehicle. However, we can combine n consecutive vehicles into a single sequence
x = {v1, v2, . . . , vn}, so we will have 2n possible sequences, x1, . . . , x2n . If the probability of
a car is pc, then the probability of any given sequence of n vehicles of which i are cars is
pic(1 − pc)

n−i. Hence we can construct a binary tree to represent the collection of possible
n-vehicle sequences x1, . . . , x2n , each with a probability pk, and path length − log2 qk, with
qk ≈ pk, k = 1, . . . , 2n. We can completely identify each n-vehicle sequence by the path from
the root to the corresonding leaf, and each path is identified by a sequence of binary decisions
(e.g. LRRL· · ·) corresponding to Yes-No-No-Yes answers, and these sequences of decisions
can be encoded as bit strings: 1001· · ·. The length of the k-th bit string is − log2 qk. Suppose
we collect M sequences of n vehicles each, each sequence being encoded by the bitstring
corresponding to its path through the tree, where M is a very large number. The total length
of all the bitstrings concatenated together will be −M

∑

k pk log2 qk ≈ −M
∑

k pk log2 pk.

There are
(

n
i

)

sequences with exactly i cars, each having a probability of pic(1 − pc)
n−i, so

2Main idea: choose two q’s such that qi < pi, qj > pj . Then pi loge(qi + ∆q) + pj loge(qj − ∆q) ≈
pi loge q1 + pj loge qj +

(

pi

qi
− pj

qj

)

∆q. But

(

pi

qi
− pj

qj

)

> 0, hence this choice of q’s cannot be the optimal

choice.

6

the total length of the bitstrings will be3

−M
n
∑

i=0

(

n

i

)

pic(1− pc)
n−i log2 p

i
c(1− pc)

n−i = −M [pcn log2 pc + (1− pc)n log2(1− pc)]. (9)

Hence the average length per sequence will be −[pcn log2 pc +(1− pc)n log2(1− pc)], and the
average per vehicle will be −[pc log2 pc + (1− pc) log2(1− pc)]. Interpret (9) as follows. After
M sequences (each consisting of n vehicles) have been recorded, we have seen an expected
total of Mnpc cars and Mnpc̄ trucks. We can allocate log2 pc bits for each car and log2 pc̄
bits for each truck. The total number of bits allocated over all M sequences of vehicles will
exactly match (9) and also the intuition in section 1. But, to be precise, this is an average,
since the amount of information attached to cars depends also on the frequency of trucks as
well as cars.

7 Encoding Symbols that are Equally Likely

We consider encoding all sequences of n symbols, each taken from an alphabet A with a
symbols, each equally likely. There are N = an such sequences S0, . . . , SN−1, each sequence
being equally likely. So we can model the average encoding length by simply adding up the
lengths of all the codes for every sequence. Each sequence is encoded by a bit string, which
if we ignore leading zeros (except for plain 0), corresponds to an natural number between 0
and some EN−1. Sort the sequences by the numerical value of this encoding. Let Ek be the
numerical value represented by encoding for the k-th sequence.

Example 1. Example using a = 3, n = 4, N = 81
oooooo0 AAAA

oooooo1 AAAB

ooooo10 AAAC

ooooo11 AABA

oooo100 AABB
...

...
oo11111 BABB

o100000 BABC
...

...
o111111 CBAA

1000000 CBAB
...

...
1010000 CCCC

bit encoding original sequence

3Details of derivation:
∑n

i=0

(

n

i

)

pi(1 − p)n−i log
2
pi(1 − p)n−i =

∑n

i=0

(

n

i

)

pi(1 − p)n−ii log
2
p +

∑n

i=0

(

n

i

)

pi(1−p)n−i(n−i) log2(1−p). Then
∑n

i=0

(

n

i

)

pi(1−p)n−ii log2 p= pn log2 p
∑n

i=1

(

n−1

i−1

)

pi−1(1−p)n−i

= pn log2 p · 1.

7

Since all encodings are distinct, and in order 0 ≤ E0 < E1 < · · ·, we must have that E0 ≥ 0,
E1 ≥ 1, E2 ≥ 2, . . ., Ek ≥ k, etc. Let |k| denote the number of bits needed to represent the
natural number k. It is well known that j < k implies |j| ≤ |k|. So we have that the sum
of all the lengths of all the encodings for all the sequences is at least the total lengths of all
the bit representations of natural numbers up to N :

∑N−1
i=1 |EN | ≥ ∑N−1

i=0 |i|
= mN − 2m−1 − 2m−2 − · · · − 22 − 21

= mN − 2m + 2

where 2m is the smallest power of 2 greater than or equal to N . In the example above with
a = 3, n = 4, N = 81, we have m = 7. We count all the bits listed in the first column, then
subtract the leading zeroes. There are a total of 7·81 bits, 64 “leading zeroes” in the left-most
position of each bit string, 32 “leading zeroes” in the second position of each bit string, etc.
So the total number of bits, not counting leading zeroes is 7·81−64−32−16−8−4−2 = 441.
If all the symbols were equally likely, so all sequences were equally likely, then this means
that we would require on average m−2m/N+2/N > m−2 = ⌈n log2 a⌉−2 bits per sequence,
and hence O(log2 a) bits per symbol within each sequence.

If we were to pad every encoding to m bits, then we would require exactly m bits per
sequence, which is within a constant of the minimum required using the variable length
encoding just discussed. So one encoding that achieves the lower bound (within a constant)
is to use the same number O(log2 a) of bits for every symbol.

8 Encoding two symbols which are not equally likely

We again consider encoding all sequences of n symbols, each taken from an alphabet A with
a symbols, each equally likely. There are N = an such sequences S0, . . . , SN−1, each sequence
being equally likely. We have just shown that the most efficient encoding must take at least
O(log2 a) bits per symbol, and by assigning a consecutive natural number to each sequence,
we can achieve this bound.

Choose the most efficient encoding for a sequence S of length N . Split the alphabet into
two parts A1 and A2. Then the sequence S can be encoded by combining two encodings:

line 1. s1 s2 s3 s4 · · · sN original sequence
line 2. 1 2 2 1 · · · ? from A1 or A2

line 3. s̃ s̃ s̃ s̃ · · · ? encoding within A1, A2

The most efficient encoding in Line 3 would be to use b1 ≈ log |A1| def

= log a1 bits per symbol
if the symbol were in A1 and choose b2 ≈ log |A2| def

= log a2 bits if the symbol were in A2,
where a1+ a2 = a. The total number of bits used to encode the sequence in Line 3 would be
Nb̃ = Np1b1+Np2b2, where p1, p2 are the fraction of symbols from the respective subalphabet
A1, A2, and p1 + p2 = 1. We have that

b̃ = p1 log a1 + p2 log a2 = p1 log ap1 + p2 log ap2 = log a + p1 log p1 + p2 log p2.

8

Since log a is the optimal number of bits needed to encode Line 1, we would need at least
−(p1 log p1+ p2 log p2) bits to encode Line 2, otherwise we would have found a more efficient
way to encode Line 1. This is exactly the entropy (average information) associated with a
2-symbol alphabet with probability p1, p2=1−p1. To complete the picture, we would have
to produce an encoding that can achieve this limit. One such encoding is a Huffman code.
Another naive approach is to use the same construction as in Example 1, but with the
sequences sorted by probabilility of occurence, with the most likely occuring first (and hence
getting the shortest encoding).

9 Approximation of factorial and binomial coefficient.

Let I(n) =
∫ n
1 ln tdt = n lnn − n + 1. Let T (n) =

∑n
1 ln k − 1/2 lnn be the trapezoidal rule

approximation using a step size of 1. The two are related by I(n) = T (n) + Err(n) with
Err(n) = 1

12

∑n
1

d2

dx2 ln ξk where k−1 ≤ ξk ≤ k. Using d2

dx2 ln x = − 1
x2 , we can bound the error

by |Err(n)| < 1
12

∑∞
1

1
k2

= π2

72
. Putting all this together, we arrive at the bounds for lnn!:

n lnn− n+ 1/2 lnn+ 1− π2

72
≤

n
∑

1

ln k = lnn! ≤ n lnn− n+ 1/2 lnn+ 1.

Hence we have the expression for n! within a close constant:

n! =
(

n

e

)n √
n · γ, where 2.3700 · · · = e1−

π
2

72 ≤ γ ≤ e = 2.7183 · · · .

We can then write the bounds for the binomial coefficient, where 0 ≤ x ≤ 1, and using the
notation x̄

def

= 1− x:
(

n

nx

)

def

=
n!

(nx)!(nx̄)!
=

η

xnxx̄nx̄
√
nxx̄

, , where .3207 · · · = e1−
π
2

72
−2 ≤ η ≤ e1−2∗(1−π

2

72
) = .4839 · · ·

Taking natural logarithms, we can write this in terms of the entropy (based on the natural
logarithm):

ln

(

n

nx

)

= − ln
√
nxx̄+ nHe(x) + ln η, where −1.1370 · · · ≤ ln η ≤ −0.7258 · · · .

or based on the logarithm base 2:

log2

(

n

nx

)

= − log2
√
nxx̄+ nH2(x) + log2 η, where −1.6403 · · · ≤ log2 η ≤ −1.0471 · · · .

We note that the Stirling Approximation to n! is n! → nne−n
√
n
√
2π, as n → ∞. Ob-

serving that n! approaches this limit monoticically from above, we can tighten the bounds

9

on γ, η, E:

2.5066 . . . =
√
2π ≤ γ ≤ e = 2.7183 . . .

0.9189 . . . = ln
√
2π ≤ ln γ ≤ 1 =

0.3392 . . . =
√
2π
e2

≤ η ≤ e
2π

= 0.4326 . . .

−1.0811 . . . = ln
√
2π − 2 ≤ ln η ≤ 1− ln(2π) = −0.8378 . . .

−1.5596 . . . = ln
√
2π − 2 ≤ ln η ≤ 1− ln(2π) = −1.2087 . . .

If x is bounded away from 0 and 1 (i.e., there is a constant c such that 0 < c < x < 1 − c),
then Stirling’s approximation implies η → 1/

√
2π = .3989 . . . as n → ∞.

10 Typical set

Let Sn denote a string of 0’s and 1’s of length n. The individual entries are independent,
and the probability of a 1 is p. We define Sum(Sn) denote the sum of all the entries (or

equivalently, the number of 1’s in the string), and Aver(Sn) =
1

n
Sum(Sn) be the “average”

entry. Then

Pr{Aver(Sn) = x} = Pr{Sum(Sn) = nx} =

(

n

nx

)

pnxp̄nx̄ =
η√
nxx̄

(

p

x

)nx (p̄

x̄

)nx̄

. (10)

As a side remark, we note that the log of this quantity can be written in terms of the
relative entropy:

log Pr{Aver(Sn) = x} = nKL(x||p)− 1/2 log(nxx̄) + log η.

This can be interpreted as follows: if the probability of a 1 bit were x, then the most
common value for Aver(Sn) would be x. But the actual probabality of a 1 bit is p, and the
KL quantity measures the discrepancy between the two probability distributions on the bit
strings induced by the probability for each individual bit.

Returning to the discussion in this section, the most common value for Aver(Sn) is p,
and this is also the expected value for Aver(Sn). The probability of this value occuring is

Pr{Aver(Sn) = p} = Pr{Sum(Sn) = np} =

(

n

np

)

pnxp̄nx̄ =
η√
npp̄

. (11)

The number of strings with exactly np 1’s (assuming np is an integer) is4

#{Sn : Aver(Sn) = p} = #{Sn : Sum(Sn) = np} =

(

n

np

)

= η
1

pnpp̄np̄
√
npp̄

= η
2nH(p)

√
npp̄

(12)

As n → ∞, the probability mass for this set of strings shrinks, yet there are on the order of
2nH(p) such strings. So we would need at least nH bits to encode them, and we would still
miss a lot of strings.

4From here on, all the logs and H ’s use base 2 logarithms.

10

In contrast, we consider the set Sδ all strings whose average value is within δ of the
expected value p, where δ is a constant or a slowly shrinking function of n. The number of
such strings is approximately

#{Sn : Aver(Sn) ∈ [p− δ, p + δ]} = #{Sn : Sum(Sn) ∈ [np− nδ, np + nδ]}
≈ 2nδ ·#{Sn : Aver(Sn) = p}

= η · 2nδ · 1

pnpp̄np̄
√
npp̄

= η · 2nδ · 2
nH(p)

√
npp̄

.

(13)

If δ is constant or a shrinking function of n, we would need on the order of nH(p)+✷ log nδ
bits to encode all these strings, taking an average of H(p) + ǫ bits per entry in the string,
where ✷, ǫ are small quantities depending on p. As n grows, ǫ = O((lognδ)/n) shrinks
toward zero, and also the probability distribution for Pr{Aver(Sn) = x}, converted to a
density in x ∈ [0, 1] approaches a normal distribution with mean p and standard deviation
√

pp̄/n. So if δ were set to a constant times the standard deviation, then probability mass of

Sδ would stay constant as n grows. But if δ were held constant (or shrinks at a slower rate
than 1/

√
n), then the probability mass for Sδ would approach 1 as n grows. So, using just

a little more than nH bits per string entry would suffice to encode almost all the strings,
missing only the strings that will almost never occur. The number of extra bits becomes
arbitrarily small as n grows.

To summarize this section, the set described in equation (13) is called a typical setmodulo
δ. For a fixed δ, the probability mass of this set approaches 1, while the number of entries
in this set grows as O(2nH(p)δ

√
n). The fraction of the total number of bit strings of length

n that lie in the typical set shrinks as O(2n(H(p)−1)δ
√
n), where −1 ≤ H(p)− 1 ≤ 0. Hence,

while the size of the typical set grows as n grows, the size of the untypical set (consisting of
all the bit strings outside the typical set) grows even faster, even though the total probability
mass of the untypical set shrinks to zero. This statement is true even for shrinking δ such
that δ > O(1/

√
n).

We end this with a remark that we can encode all strings of length n using only log p+ ǫ
bits per entry on average, One such encoding is the ad hoc encoding described in sec. 7, but
a more standard encoding accomplishing the same purpose is the Huffman encoding. Here ǫ
is an extra amount to account for the fact that we need an integer number of bits to encode
each string Sn. The size of this extra amount, when amortized over each entry in the string,
becomes arbitrarily small as n grows. Hence log p + ǫ bits per entry is not only necessary,
but also sufficient.

11 Comments to be Filled In

relative entropy (KL distance). A distribution p requires a code of aver

len H(p). If we use a code based on distribution q instead, then the

average of a code word is H(p)+ KL(p,q) = H(p)+ sum p(x) log (p(x)/q(x)).

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

<−− probability distribution, Pr(bit==1) = 0.2

<−− count fraction

 (out of 2
50

 total possible bit strings)

<−− 2 δ −−> <−− typical set: prob. mass = 0.9, count fraction =.0013

Distribution of bit strings of length 50

Average bit value = sum of bits / 50

P
ro

b
a
b
ili

ty

Figure 1: Illustration of typical set. For bit strings of length 50, with a probability of 0.2 that
a bit equals 1, there are 250 possible bit strings. Only .0013 = 0.13% of those bit strings have
a sum between 6 and 14, corresponding to an average bit value between 0.12 and 0.28. But
the probability of a bit string average being in that range is approximately 0.9 = 90%. For
bigger n, both bell curves become narrower (as 1/

√
n), hence the set of strings whose average

is in [.12, .28] would become a much smaller fraction of the total number of bit strings, but
the probability mass of this set would increase.

12

jensen’s inequality: E f(X) >= f(E X) if f is convex (convex <-> f’ >=0).

if f strictly convex and E f(X) = f(E X) , then x is a constant.

markov property: I(X1;X2) >= I(X1;X3). -> given two different starting

distributions, relative entropy between distributions at time t

given by same markov chain decreases as time progresses.

fano’s ineq: \hat X = g(Y) is an estimator of X. P_e = Pr{\hat X \neq X}, then

H(P_e)+P_e \log (|{\cal X}| - 1) \ge H(X|Y)

gamble = expected doubling rate of wealth depending on how a gambler

distrbibutes his $1 of wealth among the horses.

Two horses, winning prob p1 p2. gambler bets 2^s split b1 b2 (fractions)

among horses. Then expected value of the log of the winnings after one round

is

p1 log s b1 o1+ p2 log s b2 o2 =

log s + p1 log b1 + p2 log b2

+ p1 log o1 + p2 log o2.

Here o1, o2 are the payoff amounts on a $1 bet. Using log base 2, this

gives the doubling rate. Doubling rate is maximized if b1=p1, b2=p2.

13

Approximation of Factorial, 9

entropy, 2
conditional, 3
joint, 2
local, 3
relative, 4

H , see entropy

I, see information
Information, 1, 2
information, 1–3

Kullback-Leibler, 4

local entropy, 3

mutual information, 2, 3

Stirling’s Approximation, 9

typical set, 10

23

Contents

1 Information 1

2 Entropy 2

3 Mutual Information 2

4 Relative Entropy 4

5 Twenty Questions 5

6 Relation to Binary decisions: Cars vs Trucks 6

7 Encoding Symbols that are Equally Likely 7

8 Encoding two symbols which are not equally likely 8

9 Approximation of factorial and binomial coefficient. 9

10 Typical set 10

11 Comments to be Filled In 11

End of document 13

Way past end of document . 23

24

