CSci 5271 Introduction to Computer Security Day 26: Usability and security

Stephen McCamant University of Minnesota, Computer Science & Engineering

Outline

Usability and security

- Announcements intermission
- Usable security example areas
- AI/LLM safety and security, cont'd

DNSSEC

Users are not 'ideal components'

Most users are benign and sensible

- On the other hand, you can't just treat users as adversaries
 - Some level of trust is inevitable
 - Your institution is not a prison
- Also need to take advantage of user common sense and expertise
 - A resource you can't afford to pass up

Don't blame users

- "User error" can be the end of a discussion
- This is a poor excuse
- Almost any "user error" could be avoidable with better systems and procedures

Users as rational

Economic perspective: users have goals and pursue them

They're just not necessarily aligned with security

Ignoring a security practice can be rational if the rewards is greater than the risk

User attention is a resource

- Users have limited attention to devote to security
 Exaggeration: treat as fixed
- If you waste attention on unimportant things, it won't be available when you need it
- Fable of the boy who cried wolf

Research: deception and ethics

- Have to be very careful about ethics of experiments with human subjects
 - Enforced by institutional review systems
- When is it acceptable to deceive subjects?
 Many security problems naturally include deception

Outline

Usability and security

Announcements intermission

Usable security example areas

AI/LLM safety and security, cont'd

DNSSEC

Presentation schedule posted

Presentations will occur the next (last) three lectures

- Schedule posted today on Piazza
- 18 (13+5) minutes per project, with some administrative material interspersed

Outline

Usability and security

Announcements intermission

Usable security example areas

Al/LLM safety and security, cont'd

DNSSEC

Email encryption

- Technology became available with PGP in the early 90s
- Classic depressing study: "Why Johnny can't encrypt: a usability evaluation of PGP 5.0" (USENIX Security 1999)
- Still an open "challenge problem"
- Also some other non-Ul difficulties: adoption, govt. policy

Permissions manifest

- Android approach: present listed of requested permissions at install time
- Can be hard question to answer hypothetically
 Users may have hard time understanding implications
- User choices seem to put low value on privacy

Time-of-use checks

- iOS approach: for narrower set of permissions, ask on each use
- Proper context makes decisions clearer
- But, have to avoid asking about common things
- iOS app store is also more closely curated

Trusted UI for privileged actions

- Trusted UI works better when asking permission (e.g., Oakland'12)
- 🖲 Say, "take picture" button in phone app
 - Requested by app
 - Drawn and interpreted by OS
 - OS well positioned to be sure click is real
- Little value to attacker in drawing fake button

Outline

Usability and security

Announcements intermission

Usable security example areas

AI/LLM safety and security, cont'd

DNSSEC

Emergent risks

Scaling LLMs have often shown novel capabilities

 Which ones are most concerning in amplifying AI risk?
 Planning, pursuing goals (positive applications too)
 Self-replication (e.g., compare computer worm)
 Real world influence and deception

 Example: TaskRabbit to solve a CAPTCHA

Medium-term concerns

Economic disruption

E.g., widespread job losses and unemployment

- Acceleration: positive feedback increasing the rate of AI development
 - Reckless competition towards Al goals
 - Al facilitating science and technological development

Some reasons alignment is hard

- Humans already can't agree among themselves on universal values
- Human desires have a lot of implicit side conditions and unstated restrictions
- We don't understand many details of how LLMs work internally
- If Als become smarter than people, why would they want to obey us?

Hypothetical endpoints

🖲 Paperclip maximizer

- Seemingly simple goal + great capability = deeply undesirable result
- Will super-human AIs treat humans the way humans have treated non-human animals?
 - Extreme loss of agency is possible without destruction
 - Many different example animals and possible perspectives
 - Too close of an analogy may be unrealistic, since AI may be much less like us than animals are

Precaution and p(doom)

- A trending conversation topic is comparing estimates on the probability of a catastrophic outcome from AI
- Surprisingly many people working in Al have a significant p(doom)
 - Progress is inevitable, or it would be worse without me
- Choosing not to pursue technology because of downside risks is rare
 - Compare: nuclear weapons and energy

Outline

Usability and security

Announcements intermission

- Usable security example areas
- AI/LLM safety and security, cont'd

DNSSEC

DNS: trusted but vulnerable

- Almost every higher-level service interacts with DNS
- UDP protocol with no authentication or crypto Lots of attacks possible
- Problems known for a long time, but challenge to fix compatibly

DNSSEC goals and non-goals

- + Authenticity of positive replies
- + Authenticity of negative replies
- + Integrity
- Confidentiality
- Availability

First cut: signatures and certificates Each resource record gets an RRSIG signature E.g., A record for one name→address mapping Observe: signature often larger than data Signature validation keys in DNSKEY RRs Recursive chain up to the root (or other "anchor")

Add more indirection

- DNS needs to scale to very large flat domains like . com
- Facilitated by having single DS RR in parent indicating delegation
- Chain to root now includes DSes as well

Negative answers

Also don't want attackers to spoof non-existence Gratuitous denial of service, force fallback, etc.

- **E** But don't want to sign "x does not exist" for all x
- Solution 1, NSEC: "there is no name between acacia and baobab"

Preventing zone enumeration

- Many domains would not like people enumerating all their entries
- DNS is public, but "not that public"
- Unfortunately NSEC makes this trivial
- Compromise: NSEC3 uses password-like salt and repeated hash, allows opt-out

DANE: linking TLS to DNSSEC

"DNS-based Authentication of Named Entities"
 DNS contains hash of TLS cert, don't need CAs
 How is DNSSEC's tree of certs better than TLS's?

Signing the root

- Political problem: many already distrust US-centered nature of DNS infrastructure
- Practical problem: must be very secure with no single point of failure
- Finally accomplished in 2010
 - Solution involves 'key ceremonies', international committees, smart cards, safe deposit boxes, etc.

Deployment

- Standard deployment problem: all cost and no benefit to being first mover
- Servers working on it, mostly top-down
- Clients: still less than 20%
- Will probably be common for a while: insecure connection to secure resolver

What about privacy?

- Users increasingly want privacy for their DNS queries as well
- Older DNSCurve and DNSCrypt protocols were not standardized
- More recent "DNS over TLS" and "DNS over HTTPS" are RFCs
- DNS over HTTPS in major browsers might have serious centralization effects