CSci 5271
Introduction to Computer Security
More crypto protocols and failures

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

More cross-site risks, contd

Cross-site request forgery

©) Certain web form on bank . com used to wire money

o) Link or script on evil.com loads it with certain

parameters
® Linking is exception to same-origin

6 If 'm logged in, money sent automatically
©) Confused deputy, cookies are ambient authority

CSRF prevention

£) Give site’s forms random-nonce tokens

® E.g, in POST hidden fields
® Not in a cookie, that's the whole point

©) Reject requests without proper token
® Or, ask user to re-authenticate

£) XSS can be used to steal CSRF tokens

Open redirects

£) Common for one page to redirect clients to another

©) Target should be validated
® With authentication check if appropriate
£) Open redirect. target supplied in parameter with no
checks
® Doesn't directly hurt the hosting site
® But reputation risk, say if used in phishing
® We teach users to trust by site

Outline

Confidentiality and privacy

Site perspective

) Protect confidentiality of authenticators
® Passwords, session cookies, CSRF tokens
©) Duty to protect some customer info
® Personally identifying info (“identity theft”)
® Credit-card info (Payment Card Industry Data Security
Standards)
® Health care (HIPAA), education (FERPA)
® Whatever customers reasonably expect

You need to use SSL

£ Finally coming around to view that more sites need
to support HTTPS
® Special thanks to WiFi, NSA
£ If you take credit cards (of course)

o) If you ask users to log in

® Must be protecting something, right?
® Also important for users of Tor et al.




Server-side encryption

£) Also consider encrypting data “at rest”
£) (Or, avoid storing it at all)
£) Provides defense in depth
® Reduce damage after another attack
©) May be hard to truly separate keys

® OWASP example: public key for website — backend
credit card info

Adjusting client behavior

©) HTTPS and password fields are basic hints

©) Consider disabling autocomplete
® Usability tradeoff, save users from themselves
® Finally standardized in HTMLS

£) Consider disabling caching

® Performance tradeoff
® Better not to have this on user's disk
® Or proxy? You need SSL

User vs. site perspective

) User privacy goals can be opposed to site goals
©) Such as in tracking for advertisements

©) Browser makers can find themselves in the middle
® Of course, differ in institutional pressures

Third party content / web bugs

£) Much tracking involves sites other than the one in

the URL bar
® For fun, check where your cookies are coming from

) Various levels of cooperation
£) Web bugs are typically 1x1 images used only for
tracking

Fllke <0

Cookies arms race

) Privacy-sensitive users like to block and/or delete
cookies
) Sites have various reasons to retain identification

) Various workarounds:

® Similar features in Flash and HTML5

® Various channels related to the cache

® Evercookie: store in n places, regenerate if subset are
deleted

Browser fingerprinting

£) Combine various server or JS-visible attributes

passively
® User agent string (10 bits)
® Window/screen size (483 bits)
® Available fonts (13.9 bits)
® Plugin verions (154 bits)

(Data from panopticlick.eff.org, far from exhaustive)

History stealing

o) History of what sites you've visited is not supposed

to be JS-visible
©) But, many side-channel attacks have been possible
® Query link color
® CSS style with external image for visited links
® Slow-rendering timing channel
® Harvesting bitmaps
® User perception (e.qg. fake CAPTCHA)

Browser and extension choices

£) More aggressive privacy behavior lives in extensions

® Disabling most JavaScript (NoScript)
® HTTPS Everywhere (allow-list)
® Tor Browser Bundle
) Default behavior is much more controversial

® Concern not to kill advertising support as an economic
model




Outline

Announcements intermission

Exercise set status

£) Exercise set 3 was released yesterday, and will be
due a week from today

£ | promise we haven't forgotten about grading
exercise set 2

Research project status

©) Sent invitations this morning for meetings
Tuesday-Friday

£) Next progress reports will be a week from
Wednesday

©) Presentations will be the last 2 or 3 lectures

Outline

Even more web risks

Misconfiguration problems

) Default accounts
©) Unneeded features

©) Framework behaviors
® Don't automatically create variables from query fields

Openness tradeoffs

€ Error reporting

® Few benign users want to see a stack backtrace
£) Directory listings

® Hallmark of the old days
©) Readable source code of scripts

® Doesn't have your DB password in it, does it?

Using vulnerable components

©) Large web apps can use a lot of third-party code

©) Convenient for attackers too

® OWASP: two popular vulnerable components downloaded
22m times

©) Hiding doesn't work if it's popular
©) Stay up to date on security announcements

Clickjacking

£) Fool users about what they're clicking on
® Circumvent security confirmations
® Fabricate ad interest
£) Example techniques:
® Frame embedding
® Transparency
® Spoof cursor
® Temporal “bait and switch”




Crawling and scraping

o) A lot of web content is free-of-charge, but

proprietary
® Yours in a certain context, if you view ads, etc.

) Sites don't want it downloaded automatically (web
crawling)

©) Or parsed and user for another purpose (screen
scraping)

©) High-rate or honest access detectable

Outline

More crypto protocols

Abstract protocols

©) Outline of what information is communicated in
messages
® Omit most details of encoding, naming, sizes, choice of
ciphers, etc.
) Describes honest operation
® But must be secure against adversarial participants

£) Seemingly simple, but many subtle problems

Protocol notation

A —B: NB,{T(),B, NB}KB
©) A — B: message sent from Alice intended for Bob
£) B (after :): Bob's name
0 {- - - Jx: encryption with key K

Needham-Schroeder

Mutual authentication via nonce exchange, assuming
public keys (core):

A—B: {NA, A}EB

B—A: {NA)NB}EA

A— B: {NB}EB

Needham-Schroeder middleperson

A—C: {NA,A}EC
C—=B: {Na, Al
B — C: {Na,Ngl,
C— A: {Na,Ngl,
A—C: {NB}EC
C—B: {Nglg,

Certificates, Denning-Sacco

o) A certificate signed by a trusted third-party S binds
an identity to a public key
8 Chr= Siqns(A, KA)

) Suppose we want to use S in establishing a session

kGYKABZ
A—S: AB
S—A: CA,CB

A — B: Ca, Cg,{Signa(Kap)lk,

Attack against Denning-Sacco

A—S: A,B
S—A: CA, CB

A — B: Ca,Cs,{Sign, (Kag)lk,
B—S: B,C

S—B: CB, CC

B—C: CA) CC){SignA(KAB)}KC
By re-encrypting the signed key, Bob can pretend to be
Alice to Charlie




Envelopes analogy

©) Encrypt then sign, or vice-versa?

£) On paper, we usually sign inside an envelope, not
outside. Two reasons:
® Attacker gets letter, puts in his own envelope (cf. attack
against X.509)
® Signer claims “didn't know what was in the envelope”
(failure of non-repudiation)

Design robustness principles

£) Use timestamps or nonces for freshness

£) Be explicit about the context

©) Don't trust the secrecy of others’ secrets

£) Whenever you sign or decrypt, beware of being an
oracle

£) Distinquish runs of a protocol

Implementation principles

©) Ensure unique message types and parsing

©) Design for ciphers and key sizes to change
©) Limit information in outbound error messages
£) Be careful with out-of-order messages

Outline

More causes of crypto failure

Random numbers and entropy

) Cryptographic RNGs use cipher-like techniques to
provide indistinguishability
©) But rely on truly random seeding to stop brute force

® Extreme case: no entropy — always same “randomness”

£) Modern best practice: seed pool with 256 bits of

entropy
® Suitable for security levels up to 225

Netscape RNG failure

£) Early versions of Netscape SSL (1994-1995) seeded
with:
® Time of day

® Process ID
® Parent process ID

£) Best case entropy only 64 bits
® (Not out of step with using 40-bit encryption)

£) But worse because many bits guessable

Debian/OpenSSL RNG failure (1)

£) OpenSSL has pretty good scheme using
/dev/urandom
£) Also mixed in some uninitialized variable values
® “Extra variation can't hurt”
©) From modern perspective, this was the original sin
® Remember undefined behavior discussion?

©) But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

) Debian maintainer commented out some lines to fix

a Valgrind warning
® “Potential use of uninitialized value”

£) Accidentally disabled most entropy (all but 16 bits)

©) Brief mailing list discussion didn't lead to
understanding

£) Broken library used for ~2 years before discovery




Detected RSA/DSA collisions

£) 2012: around 1% of the SSL keys on the public net
are breakable
® Some sites share complete keypairs
® RSA keys with one prime in common (detected by
large-scale GCD)
) One likely culprit: insufficient entropy in key
generation
= Embedded devices, Linux /dev/urandom Vs.
/dev/random

©) DSA signature algorithm also very vulnerable

Newer factoring problem (CCS17)

£) An Infineon RSA library used primes of the form
p =k M+ (65537¢ mod M)

£) Smaller problems: fingerprintable, less entropy

£) Major problem: can factor with a variant of

Coppersmith’s algorithm
® Eg, 3 CPU months for a 1024-bit key

Side-channel attacks

©) Timing analysis:
® Number of 1 bits in modular exponentiation
® Unpadding, MAC checking, error handling
® Probe cache state of AES table entries

©) Power analysis
® Especially useful against smartcards

) Fault injection

WEP “privacy”

£) First WiFi encryption standard: Wired Equivalent
Privacy (WEP)
£) F&S: designed by a committee that contained no
cryptographers
£) Problem 1. note “privacy”: what about integrity?
® Nope: stream cipher + CRC = easy bit flipping

WEP shared key

o) Single key known by all parties on network
©) Easy to compromise

©) Hard to change

£) Also often disabled by default

©) Example: a previous employer

WEP key size and IV size

£) Original sizes: 40-bit shared key (export restrictions)
plus 24-bit IV = 64-bit RC4 key
® Both too small
£) 128-bit upgrade kept 24-bit IV

® Vague about how to choose IVs
® Least bad: sequential, collision takes hours
® Worse: random or everyone starts at zero

WEP RC4 related key attacks

©) Only true crypto weakness

£) RC4 “key schedule” vulnerable when:

® RC4 keys very similar (e.g., same key, similar IV)
® First stream bytes used

©) Not a practical problem for other RC4 users like SSL
® Key from a hash, skip first output bytes

Newer problem with WPA (CCS'17)

£) Session key set up in a 4-message handshake

£) Key reinstallation attack: replay #3
® Causes most implementations to reset nonce and replay
counter
® In turn allowing many other attacks
® One especially bad case: reset key to O

£) Protocol state machine behavior poorly described in
spec
® Outside the scope of previous security proofs




Trustworthiness of primitives

) Classic worry: DES S-boxes
©) Obviously in trouble if cipher chosen by your

adversary

£ In a public spec, most worrying are unexplained

elements

©) Best practice: choose constants from well-known

math, like digits of 7t

Dual EC DRBG (1)

£) Pseudorandom generator in NIST standard, based on
elliptic curve

£) Looks like provable (slow enough!) but strangely no
proof

£) Specification includes long unexplained constants

) Academic researchers find:

® Some EC parts look good
® But outputs are statistically distinguishable

Dual EC DRBG (2)

©) Found 2007: special choice of constants allows

prediction attacks
® Big red flag for paranoid academics

©) Significant adoption in products sold to US govt.

FIPS-140 standards
® Semi-plausible rationale from RSA (EMC)

£) NSA scenario basically confirmed by Snowden leaks

® NIST and RSA immediately recommend withdrawal




