
CSci 5271
Introduction to Computer Security
More crypto protocols and failures

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

More cross-site risks, cont’d

Confidentiality and privacy

Announcements intermission

Even more web risks

More crypto protocols

More causes of crypto failure

Cross-site request forgery

Certain web form on bank.com used to wire money

Link or script on evil.com loads it with certain
parameters

Linking is exception to same-origin

If I’m logged in, money sent automatically

Confused deputy, cookies are ambient authority

CSRF prevention

Give site’s forms random-nonce tokens
E.g., in POST hidden fields
Not in a cookie, that’s the whole point

Reject requests without proper token
Or, ask user to re-authenticate

XSS can be used to steal CSRF tokens

Open redirects

Common for one page to redirect clients to another

Target should be validated
With authentication check if appropriate

Open redirect: target supplied in parameter with no
checks

Doesn’t directly hurt the hosting site
But reputation risk, say if used in phishing
We teach users to trust by site

Outline

More cross-site risks, cont’d

Confidentiality and privacy

Announcements intermission

Even more web risks

More crypto protocols

More causes of crypto failure

Site perspective

Protect confidentiality of authenticators
Passwords, session cookies, CSRF tokens

Duty to protect some customer info
Personally identifying info (“identity theft”)
Credit-card info (Payment Card Industry Data Security
Standards)
Health care (HIPAA), education (FERPA)
Whatever customers reasonably expect

You need to use SSL

Finally coming around to view that more sites need
to support HTTPS

Special thanks to WiFi, NSA

If you take credit cards (of course)

If you ask users to log in
Must be protecting something, right?
Also important for users of Tor et al.



Server-side encryption

Also consider encrypting data “at rest”

(Or, avoid storing it at all)

Provides defense in depth
Reduce damage after another attack

May be hard to truly separate keys
OWASP example: public key for website ! backend
credit card info

Adjusting client behavior

HTTPS and password fields are basic hints

Consider disabling autocomplete
Usability tradeoff, save users from themselves
Finally standardized in HTML5

Consider disabling caching
Performance tradeoff
Better not to have this on user’s disk
Or proxy? You need SSL

User vs. site perspective

User privacy goals can be opposed to site goals

Such as in tracking for advertisements

Browser makers can find themselves in the middle
Of course, differ in institutional pressures

Third party content / web bugs

Much tracking involves sites other than the one in
the URL bar

For fun, check where your cookies are coming from

Various levels of cooperation

Web bugs are typically 1x1 images used only for
tracking

Cookies arms race

Privacy-sensitive users like to block and/or delete
cookies

Sites have various reasons to retain identification

Various workarounds:
Similar features in Flash and HTML5
Various channels related to the cache
Evercookie: store in n places, regenerate if subset are
deleted

Browser fingerprinting

Combine various server or JS-visible attributes
passively

User agent string (10 bits)
Window/screen size (4.83 bits)
Available fonts (13.9 bits)
Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from exhaustive)

History stealing

History of what sites you’ve visited is not supposed
to be JS-visible
But, many side-channel attacks have been possible

Query link color
CSS style with external image for visited links
Slow-rendering timing channel
Harvesting bitmaps
User perception (e.g. fake CAPTCHA)

Browser and extension choices

More aggressive privacy behavior lives in extensions
Disabling most JavaScript (NoScript)
HTTPS Everywhere (allow-list)
Tor Browser Bundle

Default behavior is much more controversial
Concern not to kill advertising support as an economic
model



Outline

More cross-site risks, cont’d

Confidentiality and privacy

Announcements intermission

Even more web risks

More crypto protocols

More causes of crypto failure

Exercise set status

Exercise set 3 was released yesterday, and will be
due a week from today

I promise we haven’t forgotten about grading
exercise set 2

Research project status

Sent invitations this morning for meetings
Tuesday–Friday

Next progress reports will be a week from
Wednesday

Presentations will be the last 2 or 3 lectures

Outline

More cross-site risks, cont’d

Confidentiality and privacy

Announcements intermission

Even more web risks

More crypto protocols

More causes of crypto failure

Misconfiguration problems

Default accounts

Unneeded features

Framework behaviors
Don’t automatically create variables from query fields

Openness tradeoffs

Error reporting
Few benign users want to see a stack backtrace

Directory listings
Hallmark of the old days

Readable source code of scripts
Doesn’t have your DB password in it, does it?

Using vulnerable components

Large web apps can use a lot of third-party code

Convenient for attackers too
OWASP: two popular vulnerable components downloaded
22m times

Hiding doesn’t work if it’s popular

Stay up to date on security announcements

Clickjacking

Fool users about what they’re clicking on
Circumvent security confirmations
Fabricate ad interest

Example techniques:
Frame embedding
Transparency
Spoof cursor
Temporal “bait and switch”



Crawling and scraping

A lot of web content is free-of-charge, but
proprietary

Yours in a certain context, if you view ads, etc.

Sites don’t want it downloaded automatically (web
crawling)

Or parsed and user for another purpose (screen
scraping)

High-rate or honest access detectable

Outline

More cross-site risks, cont’d

Confidentiality and privacy

Announcements intermission

Even more web risks

More crypto protocols

More causes of crypto failure

Abstract protocols

Outline of what information is communicated in
messages

Omit most details of encoding, naming, sizes, choice of
ciphers, etc.

Describes honest operation
But must be secure against adversarial participants

Seemingly simple, but many subtle problems

Protocol notation

A! B : NB; fT0; B;NBgKB
A! B: message sent from Alice intended for Bob

B (after :): Bob’s name

f� � �gK: encryption with key K

Needham-Schroeder

Mutual authentication via nonce exchange, assuming
public keys (core):
A! B : fNA; AgEB
B! A : fNA; NBgEA
A! B : fNBgEB

Needham-Schroeder middleperson

A! C : fNA; AgEC
C! B : fNA; AgEB
B! C : fNA; NBgEA
C! A : fNA; NBgEA
A! C : fNBgEC
C! B : fNBgEB

Certificates, Denning-Sacco

A certificate signed by a trusted third-party S binds
an identity to a public key

CA = SignS(A;KA)

Suppose we want to use S in establishing a session
key KAB:
A! S : A;B

S! A : CA; CB

A! B : CA; CB; fSignA(KAB)gKB

Attack against Denning-Sacco

A! S : A;B

S! A : CA; CB

A! B : CA; CB; fSignA(KAB)gKB
B! S : B;C

S! B : CB; CC

B! C : CA; CC; fSignA(KAB)gKC
By re-encrypting the signed key, Bob can pretend to be
Alice to Charlie



Envelopes analogy

Encrypt then sign, or vice-versa?

On paper, we usually sign inside an envelope, not
outside. Two reasons:

Attacker gets letter, puts in his own envelope (c.f. attack
against X.509)
Signer claims “didn’t know what was in the envelope”
(failure of non-repudiation)

Design robustness principles

Use timestamps or nonces for freshness

Be explicit about the context

Don’t trust the secrecy of others’ secrets

Whenever you sign or decrypt, beware of being an
oracle

Distinguish runs of a protocol

Implementation principles

Ensure unique message types and parsing

Design for ciphers and key sizes to change

Limit information in outbound error messages

Be careful with out-of-order messages

Outline

More cross-site risks, cont’d

Confidentiality and privacy

Announcements intermission

Even more web risks

More crypto protocols

More causes of crypto failure

Random numbers and entropy

Cryptographic RNGs use cipher-like techniques to
provide indistinguishability
But rely on truly random seeding to stop brute force

Extreme case: no entropy ! always same “randomness”

Modern best practice: seed pool with 256 bits of
entropy

Suitable for security levels up to 2256

Netscape RNG failure

Early versions of Netscape SSL (1994-1995) seeded
with:

Time of day
Process ID
Parent process ID

Best case entropy only 64 bits
(Not out of step with using 40-bit encryption)

But worse because many bits guessable

Debian/OpenSSL RNG failure (1)

OpenSSL has pretty good scheme using
/dev/urandom

Also mixed in some uninitialized variable values
“Extra variation can’t hurt”

From modern perspective, this was the original sin
Remember undefined behavior discussion?

But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

Debian maintainer commented out some lines to fix
a Valgrind warning

“Potential use of uninitialized value”

Accidentally disabled most entropy (all but 16 bits)

Brief mailing list discussion didn’t lead to
understanding

Broken library used for �2 years before discovery



Detected RSA/DSA collisions
2012: around 1% of the SSL keys on the public net
are breakable

Some sites share complete keypairs
RSA keys with one prime in common (detected by
large-scale GCD)

One likely culprit: insufficient entropy in key
generation

Embedded devices, Linux /dev/urandom vs.
/dev/random

DSA signature algorithm also very vulnerable

Newer factoring problem (CCS’17)

An Infineon RSA library used primes of the form
p = k � M+ (65537a mod M)

Smaller problems: fingerprintable, less entropy

Major problem: can factor with a variant of
Coppersmith’s algorithm

E.g., 3 CPU months for a 1024-bit key

Side-channel attacks

Timing analysis:
Number of 1 bits in modular exponentiation
Unpadding, MAC checking, error handling
Probe cache state of AES table entries

Power analysis
Especially useful against smartcards

Fault injection

WEP “privacy”

First WiFi encryption standard: Wired Equivalent
Privacy (WEP)

F&S: designed by a committee that contained no
cryptographers
Problem 1: note “privacy”: what about integrity?

Nope: stream cipher + CRC = easy bit flipping

WEP shared key

Single key known by all parties on network

Easy to compromise

Hard to change

Also often disabled by default

Example: a previous employer

WEP key size and IV size

Original sizes: 40-bit shared key (export restrictions)
plus 24-bit IV = 64-bit RC4 key

Both too small

128-bit upgrade kept 24-bit IV
Vague about how to choose IVs
Least bad: sequential, collision takes hours
Worse: random or everyone starts at zero

WEP RC4 related key attacks

Only true crypto weakness

RC4 “key schedule” vulnerable when:
RC4 keys very similar (e.g., same key, similar IV)
First stream bytes used

Not a practical problem for other RC4 users like SSL
Key from a hash, skip first output bytes

Newer problem with WPA (CCS’17)

Session key set up in a 4-message handshake

Key reinstallation attack: replay #3
Causes most implementations to reset nonce and replay
counter
In turn allowing many other attacks
One especially bad case: reset key to 0

Protocol state machine behavior poorly described in
spec

Outside the scope of previous security proofs



Trustworthiness of primitives

Classic worry: DES S-boxes

Obviously in trouble if cipher chosen by your
adversary

In a public spec, most worrying are unexplained
elements

Best practice: choose constants from well-known
math, like digits of �

Dual EC DRBG (1)

Pseudorandom generator in NIST standard, based on
elliptic curve

Looks like provable (slow enough!) but strangely no
proof

Specification includes long unexplained constants

Academic researchers find:
Some EC parts look good
But outputs are statistically distinguishable

Dual EC DRBG (2)

Found 2007: special choice of constants allows
prediction attacks

Big red flag for paranoid academics

Significant adoption in products sold to US govt.
FIPS-140 standards

Semi-plausible rationale from RSA (EMC)

NSA scenario basically confirmed by Snowden leaks
NIST and RSA immediately recommend withdrawal


