CSci 5271
Introduction to Computer Security
Day 20: Web security, part 1

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Key distribution and PKI, contd

Certificates

©) A name and a public key, signed by someone else
® C, = Signg(A, Ka)

£) Basic unit of transitive trust

£) Commonly use a complex standard “X.509"

Certificate authorities

£) "CA” for short: entities who sign certificates

£) Simplest model: one central CA
£) Works for a single organization, not the whole world

CA hierarchies

£) Organize CAs in a tree

©) Distributed, but centralized (like DNS)

©) Check by follow a path to the root

©) Best practice: sub CAs are limited in what they

certify

PKI for authorization

©) Enterprise PKI can link up with permissions
£) One approach: PKI maps key to name, ACL maps

name to permissions
£) Often better: link key with permissions directly, name

is a comment
® More like capabilities

The revocation problem

£) How can we make certs “go away” when needed?
©) Impossible without being online somehow

1. Short expiration times

2. Certificate revocation lists

3. Certificate status checking

Outline

SSH

Short history of SSH

) Started out as freeware by Tatu Yi6nen in 1995
©) Original version commercialized

) Fully open-source OpenSSH from OpenBSD

©) Protocol redesigned and standardized for "SSH 2"

OpenSSH t-shirt

www- OpenSSH - <o~

Putting an end to unencrypted network logins

SSH host keys

©) Every SSH server has a public/private keypair
©) Ideally, never changes once SSH is installed

) Early generation a classic entropy problem
® Especially embedded systems, VMs

Authentication methods

£) Password, encrypted over channel
£) .shosts: like .rhosts, but using client host key
£) User-specific keypair
® Public half on server, private on client
©) Plugins for Kerberos, PAM modules, etc.

Old crypto vulnerabilities

©) 1x had only CRC for integrity
® Worst case: when used with RC4
©) Injection attacks still possible with CBC
® CRC compensation attack
) For least-insecure 1.x-compatibility, attack detector
©) Alas, detector had integer overflow worse than
original attack

Newer crypto vulnerabilities

£ IV chaining: IV based on last message ciphertext

® Allows chosen plaintext attacks
® Better proposal: separate, random IVs

£) Some tricky attacks still left
® Send byte-by-byte, watch for errors
® Of arquable exploitability due to abort

£ Now migrating to CTR mode

SSH over SSH

©) SSH to machine 1, from there to machine 2
= Common in these days of NATs

£) Better: have machine 1 forward an encrypted
connection

1. No need to trust 1 for secrecy

2. Timing attacks against password typing

SSH (non-)PKI

£) When you connect to a host freshly, a mild note
£) When the host key has changed, a large warning

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! Q

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)!

It is also possible that a host key has just been changed.

Outline

TLS (SSL)

SSL/TLS

£) Developed at Netscape in early days of the public
web
® Usable with other protocols too, eg. IMAP
£) SSL 1.0 pre-public, 2.0 lasted only one year, 3.0
much better
£) Renamed to TLS with RFC process
® TLS 10 improves SSL 3.0
£) TLS 11 and 1.2 in 2006 and 2008, only gradual
adoption

IV chaining vulnerability

£) TLS 10 uses previous ciphertext for CBC IV

©) But, easier to attack in TLS:

® More opportunities to control plaintext
® Can automatically repeat connection

£) "BEAST" automated attack in 2011: TLS 1.1 wakeup
call

Compression oracle vuln.

€ Compr(S || A), where S should be secret and A is
attacker-controlled

£) Attacker observes ciphertext length
2 If A is similar to S, combination compresses better
£) Compression exists separately in HTTP and TLS

But wait, there’s more!

£) Too many vulnerabilities to mention them all in
lecture
©) Kaloper-Mersinjak et al. have longer list
® “Lessons learned” are variable, though

©) Meta-message: don't try this at home

HTTPS hierarchical PKI

©) Browser has order of 100 root certs

® Not same set in every browser
® Standards for selection not always clear

£) Many of these in turn have sub-CAs
£) Also, “wildcard” certs for individual domains

Hierarchical trust?

©) No. Any CA can sign a cert for any domain

©) A couple of CA compromises recently

£) Most major governments, and many companies
you've never heard of, could probably make a
google.com cert

) Still working on: make browser more picky, compare
notes

CA vs. leaf checking bug

£) Certs have a bit that says if they're a CA

©) All but last entry in chain should have it set

£) Browser authors repeatedly fail to check this bit
£) Allows any cert to sign any other cert

MD5 certificate collisions

£) MD5 collisions allow forging CA certs

©) Create innocuous cert and CA cert with same hash

® Requires some guessing what CA will do, like sequential
serial numbers
® Also 200 PS3s

£) Oh, should we stop using that hash function?

CA validation standards

£) CA’s job to check if the buyer really is foo.com

£) Race to the bottom problem:

® CA has minimal liability for bad certs
® Many people want cheap certs
m Cost of validation cuts out of profit

£) “Extended validation” (green bar) certs attempt to fix

HTTPS and usability

£) Many HTTPS security challenges tied with user
decisions
0 Is this really my bank?

£) Seems to be a quite tricky problem

® Security warnings often ignored, etc.
® We'll return to this as a major example later

Outline

The web from a security perspective

Once upon a time: the static web

£) HTTP: stateless file download protocol
® TCR usually using port 80
©) HTML: markup language for text with formatting and
links
©) All pages public, so no need for authentication or
encryption

Web applications

£) The modern web depends heavily on active software

£) Static pages have ads, paywalls, or “Edit” buttons

£) Many web sites are primarily forms or storefronts

£) Web hosted versions of desktop apps like word
processing

Server programs

£) Could be anything that outputs HTML
©) In practice, heavy use of databases and frameworks
©) Wide variety of commercial, open-source, and
custom-written
) Flexible scripting languages for ease of development
® PHP, Ruby, Perl, etc.

Client-side programming

£) Java: nice language, mostly moved to other uses

£) ActiveX: Windows-only binaries, no sandboxing
® Glad to see it on the way out
£) Flash and Silverlight: most important use is DRM-ed
video

£) Core language: JavaScript

JavaScript and the DOM

£) JavaScript (JS) is a dynamically-typed prototype-O0O
language
® No real similarity with Java
©) Document Object Model (DOMY): lets JS interact with
pages and the browser

©) Extensive security checks for untrusted-code model

Same-origin policy

£) Origin is a tuple (scheme, host, port)
® Eg, (http, www.umn.edu, 80)
£) Basic JS rule: interaction is allowed only with the
same origin
) Different sites are (mostly) isolated applications

GET, POST, and cookies

£) GET request loads a URL, may have parameters
delimited with 7, &, =
® Standard: should not have side-effects
£) POST request originally for forms
® Can be larger, more hidden, have side-effects
) Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

£) "Web attacker” owns their own site
(www.attacker.com)
® And users sometimes visit it
® Realistic reasons: ads, SEO
£) "Network attacker” can view and sniff unencrypted
data
® Unprotected coffee shop WiFi

Outline

SQL injection

Relational model and SQL

) Relational databases have tables with rows and
single-typed columns

£) Used in web sites (and elsewhere) to provide
scalable persistent storage

©) Allow complex queries in a declarative language SQL

Example SQL queries

©) SELECT name, grade FROM Students WHERE
grade < 60 ORDER BY name;

) UPDATE Votes SET count = count + 1 WHERE
candidate = ’John’;

Template: injection attacks

£ Your program interacts with an interpreted language
£) Untrusted data can be passed to the interpreter

£) Attack data can break parsing assumptions and
execute arbitrary commands

SQL + injection

£) Why is this named most critical web app. risk?
£) Easy mistake to make systematically
£) Can be easy to exploit

©) Database often has high-impact contents
® Eg, logins or credit cards on commerce site

Strings do not respect syntax

£) Key problem: assembling commands as strings
) "WHERE name = ’$name’;"

£) Looks like $name is a string

€ Try $name = "me’ OR grade > 80; --"

Using tautologies

©) Tautology: formula that's always true
£) Often convenient for attacker to see a whole table
£ Classic: OR 1=1

Non-string interfaces

£) Best fix: avoid constructing queries as strings
£) SQL mechanism: prepared statement
® Original motivation was performance
£) Web languages/frameworks often provide other
syntax

Retain functionality: escape

©) Sanitizing data is transforming it to prevent an attack

) Escaped data is encoded to match language rules
for literal
mEg,\"and\ninC
£) But many pitfalls for the unwary:

» Differences in escape syntax between servers
® Must use right escape for context: not everything's a
string

Lazy sanitization: allow-listing

©) Allow only things you know to be safe/intended

€ Error or delete anything else

£) Short allow-list is easy and relatively easy to secure
£ E.g, digits only for non-negative integer

£) But, tends to break benign functionality

Poor idea: deny-listing

£) Space of possible attacks is endless, don't try to
think of them all

£) Want to guess how many more comment formats
SQL has?

o) Particularly silly: denying 1=1

Attacking without the program

) Often web attacks don't get to see the program
® Not even binary, it's on the server
£) Surmountable obstacle:

® Guess natural names for columns
® Harvest information from error messages

Blind SQL injection

©) Attacking with almost no feedback
£) Common: only “error” or “no error”

£) One bit channel you can make yourself: if (x) delay
10 seconds

) Trick to remember: go one character at a time

Injection beyond SQL

£) XPath/XQuery: queries on XML data

©) LDAP: queries used for authentication
£) Shell commands: example from Ex. 1

£) More web examples to come

