
CSci 5271
Introduction to Computer Security

Day 20: Web security, part 1
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Key distribution and PKI, cont’d

SSH

TLS (SSL)

The web from a security perspective

SQL injection

Certificates

A name and a public key, signed by someone else
CA = SignS(A;KA)

Basic unit of transitive trust

Commonly use a complex standard “X.509”

Certificate authorities

“CA” for short: entities who sign certificates

Simplest model: one central CA

Works for a single organization, not the whole world

CA hierarchies

Organize CAs in a tree

Distributed, but centralized (like DNS)

Check by follow a path to the root

Best practice: sub CAs are limited in what they
certify

PKI for authorization

Enterprise PKI can link up with permissions

One approach: PKI maps key to name, ACL maps
name to permissions
Often better: link key with permissions directly, name
is a comment

More like capabilities

The revocation problem

How can we make certs “go away” when needed?

Impossible without being online somehow

1. Short expiration times

2. Certificate revocation lists

3. Certificate status checking

Outline

Key distribution and PKI, cont’d

SSH

TLS (SSL)

The web from a security perspective

SQL injection

Short history of SSH

Started out as freeware by Tatu Ylönen in 1995

Original version commercialized

Fully open-source OpenSSH from OpenBSD

Protocol redesigned and standardized for “SSH 2”

OpenSSH t-shirt

SSH host keys

Every SSH server has a public/private keypair

Ideally, never changes once SSH is installed

Early generation a classic entropy problem
Especially embedded systems, VMs

Authentication methods

Password, encrypted over channel

.shosts: like .rhosts, but using client host key

User-specific keypair
Public half on server, private on client

Plugins for Kerberos, PAM modules, etc.

Old crypto vulnerabilities

1.x had only CRC for integrity
Worst case: when used with RC4

Injection attacks still possible with CBC
CRC compensation attack

For least-insecure 1.x-compatibility, attack detector

Alas, detector had integer overflow worse than
original attack

Newer crypto vulnerabilities

IV chaining: IV based on last message ciphertext
Allows chosen plaintext attacks
Better proposal: separate, random IVs

Some tricky attacks still left
Send byte-by-byte, watch for errors
Of arguable exploitability due to abort

Now migrating to CTR mode

SSH over SSH

SSH to machine 1, from there to machine 2
Common in these days of NATs

Better: have machine 1 forward an encrypted
connection

1. No need to trust 1 for secrecy

2. Timing attacks against password typing

SSH (non-)PKI

When you connect to a host freshly, a mild note

When the host key has changed, a large warning

@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)!
It is also possible that a host key has just been changed.

Outline

Key distribution and PKI, cont’d

SSH

TLS (SSL)

The web from a security perspective

SQL injection

SSL/TLS
Developed at Netscape in early days of the public
web

Usable with other protocols too, e.g. IMAP

SSL 1.0 pre-public, 2.0 lasted only one year, 3.0
much better
Renamed to TLS with RFC process

TLS 1.0 improves SSL 3.0

TLS 1.1 and 1.2 in 2006 and 2008, only gradual
adoption

IV chaining vulnerability

TLS 1.0 uses previous ciphertext for CBC IV

But, easier to attack in TLS:
More opportunities to control plaintext
Can automatically repeat connection

“BEAST” automated attack in 2011: TLS 1.1 wakeup
call

Compression oracle vuln.

Compr(S k A), where S should be secret and A is
attacker-controlled

Attacker observes ciphertext length

If A is similar to S, combination compresses better

Compression exists separately in HTTP and TLS

But wait, there’s more!

Too many vulnerabilities to mention them all in
lecture
Kaloper-Meršinjak et al. have longer list

“Lessons learned” are variable, though

Meta-message: don’t try this at home

HTTPS hierarchical PKI

Browser has order of 100 root certs
Not same set in every browser
Standards for selection not always clear

Many of these in turn have sub-CAs

Also, “wildcard” certs for individual domains

Hierarchical trust?

No. Any CA can sign a cert for any domain

A couple of CA compromises recently

Most major governments, and many companies
you’ve never heard of, could probably make a
google.com cert

Still working on: make browser more picky, compare
notes

CA vs. leaf checking bug

Certs have a bit that says if they’re a CA

All but last entry in chain should have it set

Browser authors repeatedly fail to check this bit

Allows any cert to sign any other cert

MD5 certificate collisions

MD5 collisions allow forging CA certs

Create innocuous cert and CA cert with same hash
Requires some guessing what CA will do, like sequential
serial numbers
Also 200 PS3s

Oh, should we stop using that hash function?

CA validation standards

CA’s job to check if the buyer really is foo.com

Race to the bottom problem:
CA has minimal liability for bad certs
Many people want cheap certs
Cost of validation cuts out of profit

“Extended validation” (green bar) certs attempt to fix

HTTPS and usability

Many HTTPS security challenges tied with user
decisions

Is this really my bank?

Seems to be a quite tricky problem
Security warnings often ignored, etc.
We’ll return to this as a major example later

Outline

Key distribution and PKI, cont’d

SSH

TLS (SSL)

The web from a security perspective

SQL injection

Once upon a time: the static web

HTTP: stateless file download protocol
TCP, usually using port 80

HTML: markup language for text with formatting and
links

All pages public, so no need for authentication or
encryption

Web applications

The modern web depends heavily on active software

Static pages have ads, paywalls, or “Edit” buttons

Many web sites are primarily forms or storefronts

Web hosted versions of desktop apps like word
processing

Server programs

Could be anything that outputs HTML

In practice, heavy use of databases and frameworks

Wide variety of commercial, open-source, and
custom-written
Flexible scripting languages for ease of development

PHP, Ruby, Perl, etc.

Client-side programming

Java: nice language, mostly moved to other uses

ActiveX: Windows-only binaries, no sandboxing
Glad to see it on the way out

Flash and Silverlight: most important use is DRM-ed
video

Core language: JavaScript

JavaScript and the DOM

JavaScript (JS) is a dynamically-typed prototype-OO
language

No real similarity with Java

Document Object Model (DOM): lets JS interact with
pages and the browser

Extensive security checks for untrusted-code model

Same-origin policy

Origin is a tuple (scheme, host, port)
E.g., (http, www.umn.edu, 80)

Basic JS rule: interaction is allowed only with the
same origin

Different sites are (mostly) isolated applications

GET, POST, and cookies

GET request loads a URL, may have parameters
delimited with ?, &, =

Standard: should not have side-effects

POST request originally for forms
Can be larger, more hidden, have side-effects

Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

“Web attacker” owns their own site
(www.attacker.com)

And users sometimes visit it
Realistic reasons: ads, SEO

“Network attacker” can view and sniff unencrypted
data

Unprotected coffee shop WiFi

Outline

Key distribution and PKI, cont’d

SSH

TLS (SSL)

The web from a security perspective

SQL injection

Relational model and SQL

Relational databases have tables with rows and
single-typed columns

Used in web sites (and elsewhere) to provide
scalable persistent storage

Allow complex queries in a declarative language SQL

Example SQL queries

SELECT name, grade FROM Students WHERE

grade < 60 ORDER BY name;

UPDATE Votes SET count = count + 1 WHERE

candidate = 'John';

Template: injection attacks

Your program interacts with an interpreted language

Untrusted data can be passed to the interpreter

Attack data can break parsing assumptions and
execute arbitrary commands

SQL + injection

Why is this named most critical web app. risk?

Easy mistake to make systematically

Can be easy to exploit

Database often has high-impact contents
E.g., logins or credit cards on commerce site

Strings do not respect syntax

Key problem: assembling commands as strings

"WHERE name = '$name';"

Looks like $name is a string

Try $name = "me' OR grade > 80; --"

Using tautologies

Tautology: formula that’s always true

Often convenient for attacker to see a whole table

Classic: OR 1=1

Non-string interfaces

Best fix: avoid constructing queries as strings

SQL mechanism: prepared statement
Original motivation was performance

Web languages/frameworks often provide other
syntax

Retain functionality: escape

Sanitizing data is transforming it to prevent an attack

Escaped data is encoded to match language rules
for literal

E.g., \" and \n in C

But many pitfalls for the unwary:
Differences in escape syntax between servers
Must use right escape for context: not everything’s a
string

Lazy sanitization: allow-listing

Allow only things you know to be safe/intended

Error or delete anything else

Short allow-list is easy and relatively easy to secure

E.g., digits only for non-negative integer

But, tends to break benign functionality

Poor idea: deny-listing

Space of possible attacks is endless, don’t try to
think of them all

Want to guess how many more comment formats
SQL has?

Particularly silly: denying 1=1

Attacking without the program

Often web attacks don’t get to see the program
Not even binary, it’s on the server

Surmountable obstacle:
Guess natural names for columns
Harvest information from error messages

Blind SQL injection

Attacking with almost no feedback

Common: only “error” or “no error”

One bit channel you can make yourself: if (x) delay
10 seconds

Trick to remember: go one character at a time

Injection beyond SQL

XPath/XQuery: queries on XML data

LDAP: queries used for authentication

Shell commands: example from Ex. 1

More web examples to come

