CSci 5271
Introduction to Computer Security
Day 19: Cryptographic and "S” protocols

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline
Public-key crypto, contd

Modular arithmetic

©) Fix modulus n, keep only remainders mod n
® mod 12: clock face; mod 232 unsigned int
) +, —, and x work mostly the same
©) Division: see Exercise Set 1
) Exponentiation: efficient by square and multiply

Generators and discrete log

©) Modulo a prime p, non-zero values and x have a
nice ("group”) structure

o) g is a generator if ¢°, g, g%, g°, ... cover all
elements

©) Easy to compute x — g*
©) Inverse, discrete logarithm, hard for large p

Diffie-Hellman key exchange

£) Goal: anonymous key exchange

©) Public parameters p, g; Alice and Bob have resp.
secrets a, b

©) Alice—Bob: A =g* (mod p)

£ Bob—Alice: B = g® (mod p)

©) Alice computes B¢ = g*® =k

©) Bob computes A = g% =k

Relationship to a hard problem

£) We're not sure discrete log is hard (likely not even
NP-complete), but it's been unsolved for a long time

€ If discrete log is easy (eg, in P), DH is insecure
£) Converse might not be true: DH might have other
problems

Categorizing assumptions

©) Math assumptions unavoidable, but can categorize

©) E.g, build more complex scheme, shows it's “as
secure” as DH because it has the same underlying
assumption

£) Commonly “decisional” (DDH) and “computational”
(CDH) variants

Key size, elliptic curves

£) Need key sizes ~10 times larger then security level
® Attacks shown up to about 768 bits
) Elliptic curves: objects from higher math with
analogous group structure
® (Only tenuously connected to ellipses)
) Elliptic curve algorithms have smaller keys, about 2x
security level

General description

£) Public-key encryption (generalizes block cipher)
® Separate encryption key EK (public) and decryption key
DK (secret)
©) Signature scheme (generalizes MAC)
® Separate signing key SK (secret) and verification key VK
(public)

RSA setup

©) Choose n = pq, product of two large primes, as
modulus

©) n is public, but p and q are secret

£) Compute encryption and decryption exponents e
and d such that

M =M (mod n)

RSA encryption

©) Public key is (n,e)

©) Encryption of M is C = M¢ (mod n)

) Private key is (n, d)

o Decryption of Cis C¢ =M® =M (mod n)

RSA signature

£) Signing key is (1, d)

) Signature of M is S = M? (mod n)

) Verification key is (n, e)

) Check signature by S¢ =M =M (mod n)

£) Note: symmetry is a nice feature of RSA, not shared
by other systems

RSA and factoring

£) We're not sure factoring is hard (likely not even
NP-complete), but it's been unsolved for a long time

o) If factoring is easy (e.g, in P), RSA is insecure
©) Converse might not be true: RSA might have other
problems

Homomorphism

£) Multiply RSA ciphertexts = multiply plaintexts

£) This homomorphism is useful for some interesting
applications

£) Even more powerful: fully homomaorphic encryption

(eg, both + and x)
® First demonstrated in 2009; still very inefficient

Problems with vanilla RSA

£) Homomorphism leads to chosen-ciphertext attacks

o) If message and e are both small compared to n, can
compute M'/¢ over the integers

£) Many more complex attacks too

Hybrid encryption

£) Public-key operations are slow

£ In practice, use them just to set up symmetric
session keys

-+ Only pay RSA costs at setup time

— Breaks at either level are fatal

Padding, try #1

©) Need to expand message (e.g., AES key) size to
match modulus

£) PKCS#1 v. 1.5 scheme: prepend 00 O1 FF FF .. FF

©) Surprising discovery (Bleichenbacher'98). allows

adaptive chosen ciphertext attacks on SSL
® Variants recurred later (cf. "ROBOT” 2018)

Modern “padding”

£) Much more complicated encoding schemes using
hashing, random salts, Feistel-like structures, etc.

£) Common examples: OAEP for encryption, PSS for
signing

£) Progress driven largely by improvement in random
oracle proofs

Simpler padding alternative

£) “Key encapsulation mechanism” (KEM)

©) For common case of public-key crypto used for
symmetric-key setup
® Also applies to DH
£) Choose RSA message r at random mod n,
symmetric key is H(r)
— Hard to retrofit, RSA-KEM insecure if e and r reused
with different n

Post-quantum cryptography

£) One thing quantum computers would be good for is
breaking crypto
£) Square root speedup of general search
® Countermeasure: double symmetric security level
£) Factoring and discrete log become poly-time
® DH, RSA, DSA, elliptic curves totally broken
® Totally new primitives needed (lattices, etc.)

£) Not a problem yet, but getting ready

Box and locks revisited

©) Alice and Bob's box scheme fails if an intermediary
can set up two sets of boxes
= Compare middleperson attack
©) Real world analogue: challenges of protocol design
and public key distribution

Outline

Cryptographic protocols, pt. 1

A couple more security goals

£) Non-repudiation: principal cannot later deny having
made a commitment
® |e, consider proving fact to a third party
©) Forward secrecy: recovering later information does
not reveal past information

® Motivates using Diffie-Hellman to generate fresh keys for
each session

Abstract protocols

) Outline of what information is communicated in
messages
® Omit most details of encoding, naming, sizes, choice of
ciphers, etc.

©) Describes honest operation
® But must be secure against adversarial participants

£) Seemingly simple, but many subtle problems

Protocol notation

A — B : Ng,{To, B)NB}KB
©) A — B: message sent from Alice intended for Bob
©) B (after :): Bob's name
o {- - -}x: encryption with key K

Example: simple authentication

A = B:A,{A, Nk,

) Eqg, Alice is key fob, Bob is garage door
£) Alice proves she possesses the pre-shared key Ka
® Without revealing it directly
£) Using encryption for authenticity and binding, not
secrecy

Nonce

A — B:A{A, N},
©) N is a nonce: a value chosen to make a message
unique
©) Best practice: pseudorandom

©) In constrained systems, might be a counter or
device-unique serial number

Replay attacks

£) A nonce is needed to prevent a verbatim replay of a
previous message
£) Garage door difficulty: remembering previous nonces
® Particularly: lunchtime/roommate/valet scenario
©) Or, door chooses the nonce: challenge-response
authentication

Middleperson attacks

©) Older name: man-in-the-middle attack, MITM

) Adversary impersonates Alice to Bob and
vice-versa, relays messages

©) Powerful position for both eavesdropping and
modification

©) No easy fix if Alice and Bob aren't already related

Chess grandmaster problem

£) Variant or dual of middleperson

£) Adversary forwards messages to simulate
capabilities with his own identity

£) How to win at correspondence chess
£) Anderson’s MiG-in-the-middle

Anti-pattern: “oracle”

©) Any way a legitimate protocol service can give a
capability to an adversary

£) Can exist whenever a party decrypts, signs, etc.

©) "Padding oracle” was an instance of this at the
implementation level

Outline

Key distribution and PKI

Public key authenticity

£) Public keys don't need to be secret, but they must
be right

£) Wrong key — can't stop MITM
£) So we still have a pretty hard distribution problem

Symmetric key servers

£) Users share keys with server, server distributes
session keys

£) Symmetric key-exchange protocols, or channels

£) Standard: Kerberos

£) Drawback: central point of trust

Certificates

©) A name and a public key, signed by someone else
® Ca = Signg(A, Ka)

£) Basic unit of transitive trust

£) Commonly use a complex standard “X.509"

Certificate authorities

£) "CA” for short: entities who sign certificates
£) Simplest model: one central CA
£) Works for a single organization, not the whole world

Web of trust

) Pioneered in PGP for email encryption
©) Everyone is potentially a CA: trust people you know

£) Works best with security-motivated users
® Ever attended a key signing party?

CA hierarchies

£) Organize CAs in a tree

£ Distributed, but centralized (like DNS)

£) Check by follow a path to the root

£) Best practice: sub CAs are limited in what they
certify

PKI for authorization

©) Enterprise PKI can link up with permissions

£) One approach: PKI maps key to name, ACL maps
name to permissions

) Often better: link key with permissions directly, name

is @ comment
® More like capabilities

The revocation problem

£) How can we make certs “go away” when needed?
©) Impossible without being online somehow

1. Short expiration times

2. Certificate revocation lists

3. Certificate status checking

Outline

SSH

Short history of SSH

) Started out as freeware by Tatu Ylénen in 1995

) Original version commercialized

) Fully open-source OpenSSH from OpenBSD

£) Protocol redesigned and standardized for “SSH 2"

OpenSSH t-shirt
www - OpenSSH: <o~

Putting an end to unencrypted network logins

SSH host keys

©) Every SSH server has a public/private keypair
£ Ideally, never changes once SSH is installed

) Early generation a classic entropy problem
® Especially embedded systems, VMs

Authentication methods

) Password, encrypted over channel
£) .shosts: like .rhosts, but using client host key
£) User-specific keypair
® Public half on server, private on client
©) Plugins for Kerberos, PAM modules, etc.

Old crypto vulnerabilities

©) 1x had only CRC for integrity
® Worst case: when used with RC4
£ Injection attacks still possible with CBC
® CRC compensation attack
) For least-insecure 1.x-compatibility, attack detector
£) Alas, detector had integer overflow worse than
original attack

Newer crypto vulnerabilities

©) IV chaining: IV based on last message ciphertext

® Allows chosen plaintext attacks
m Better proposal: separate, random IVs

£) Some tricky attacks still left

® Send byte-by-byte, watch for errors
® Of arguable exploitability due to abort

©) Now migrating to CTR mode

SSH over SSH

£) SSH to machine 1, from there to machine 2
= Common in these days of NATs

) Better: have machine 1 forward an encrypted
connection (cf. HAI)

1. No need to trust 1 for secrecy

2. Timing attacks against password typing

SSH (non-)PKI

£) When you connect to a host freshly, a mild note
£) When the host key has changed, a large warning

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! e

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)!

It is also possible that a host key has just been changed.

Outline

TLS (SSL)

SSL/TLS

©) Developed at Netscape in early days of the public
web
® Usable with other protocols too, eg. IMAP
£) SSL 1.0 pre-public, 2.0 lasted only one year, 3.0
much better
©) Renamed to TLS with RFC process
® TLS 10 improves SSL 3.0
) TLS 11 and 1.2 in 2006 and 2008, only gradual
adoption

IV chaining vulnerability

£) TLS 10 uses previous ciphertext for CBC IV

£) But, easier to attack in TLS:

® More opportunities to control plaintext
® Can automatically repeat connection

£) "BEAST" automated attack in 2011 TLS 1.1 wakeup
call

Compression oracle vuln.

©) Compr(S || A), where S should be secret and A is
attacker-controlled

) Attacker observes ciphertext length
O If A is similar to S, combination compresses better
©) Compression exists separately in HTTP and TLS

But wait, there’s more!

£) Too many vulnerabilities to mention them all in
lecture
£) Kaloper-Mersinjak et al. have longer list
® “Lessons learned” are variable, though

£) Meta-message: don't try this at home

HTTPS hierarchical PKI

©) Browser has order of 100 root certs

® Not same set in every browser
® Standards for selection not always clear

©) Many of these in turn have sub-CAs
£) Also, “wildcard” certs for individual domains

Hierarchical trust?

£) No. Any CA can sign a cert for any domain

£) A couple of CA compromises recently

£) Most major governments, and many companies
you've never heard of, could probably make a
google.com cert

£ Still working on: make browser more picky, compare
notes

CA vs. leaf checking bug

£) Certs have a bit that says if they're a CA

©) All but last entry in chain should have it set

©) Browser authors repeatedly fail to check this bit
©) Allows any cert to sign any other cert

MD5 certificate collisions

£) MD5 collisions allow forging CA certs

) Create innocuous cert and CA cert with same hash

® Requires some guessing what CA will do, like sequential
serial numbers
® Also 200 PS3s

£) Oh, should we stop using that hash function?

CA validation standards

©) CA’s job to check if the buyer really is foo.com

©) Race to the bottom problem:
® CA has minimal liability for bad certs
® Many people want cheap certs
® Cost of validation cuts out of profit

©) "Extended validation” (green bar) certs attempt to fix

HTTPS and usability

£) Many HTTPS security challenges tied with user
decisions
£ Is this really my bank?

£) Seems to be a quite tricky problem

® Security warnings often ignored, etc.
® We'll return to this as a major example later

Outline

DNSSEC

DNS: trusted but vulnerable

©) Almost every higher-level service interacts with DNS
) UDP protocol with no authentication or crypto
® Lots of attacks possible
£) Problems known for a long time, but challenge to fix
compatibly

DNSSEC goals and non-goals

+ Authenticity of positive replies
+ Authenticity of negative replies
+ Integrity

— Confidentiality

— Availability

First cut: signatures and certificates

£) Each resource record gets an RRSIG signature

® Eg, A record for one name—address mapping
® Observe: signature often larger than data

) Signature validation keys in DNSKEY RRs
£) Recursive chain up to the root (or other “anchor”)

Add more indirection

£) DNS needs to scale to very large flat domains like
.com

©) Facilitated by having single DS RR in parent indicating
delegation
£) Chain to root now includes DSes as well

Negative answers

£) Also don't want attackers to spoof non-existence
® Gratuitous denial of service, force fallback, etc.

£) But don't want to sign “x does not exist” for all x

£) Solution 1, NSEC: “there is no name between acacia
and baobab”

Preventing zone enumeration

£) Many domains would not like people enumerating all
their entries

£) DNS is public, but “not that public”
©) Unfortunately NSEC makes this trivial

) Compromise: NSEC3 uses password-like salt and
repeated hash, allows opt-out

DANE: linking TLS to DNSSEC

) "DNS-based Authentication of Named Entities”
£) DNS contains hash of TLS cert, don't need CAs
) How is DNSSEC's tree of certs better than TLS's?

Signing the root

) Political problem: many already distrust US-centered
nature of DNS infrastructure

) Practical problem: must be very secure with no
single point of failure

©) Finally accomplished in 2010

® Solution involves ‘key ceremonies’, international
committees, smart cards, safe deposit boxes, etc.

Deployment

£) Standard deployment problem: all cost and no
benefit to being first mover

£) Servers working on it, mostly top-down
©) Clients: still less than 20%

£) Will probably be common for a while: insecure
connection to secure resolver

What about privacy?

©) Users increasingly want privacy for their DNS
queries as well

©) Older DNSCurve and DNSCrypt protocols were not
standardized

©) More recent "DNS over TLS” and "DNS over HTTPS”
are RFCs

©) DNS over HTTPS in major browsers might have
serious centralization effects

