CSci 5271
Introduction to Computer Security
Day 16: Cryptography part 1. intro, symmetric

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Some classic network attacks

Packet sniffing

£) Watch other people’s traffic as it goes by on network

©) Easiest on:
® Old-style broadcast (thin, “*hub”) Ethernet
® Wireless

o) Or if you own the router

Forging packet sources

©) Source IP address not involved in routing, often not
checked

£) Change it to something else!

£) Might already be enough to fool a naive UDP
protocol

TCP spoofing

©) Forging source address only lets you talk, not listen

©) Old attack: wait until connection established, then
DoS one participant and send packets in their place

©) Frustrated by making TCP initial sequence numbers
unpredictable

® But see Oakland'12, WOOT12 for fancier attacks, keyword
“off-path”

ARP spoofing

£) Impersonate other hosts on local network level

£) Typical ARP implementations stateless, don't mind
changes

£) Now you get victim's traffic, can read, modify, resend

rlogin and reverse DNS

©) rlogin uses reverse DNS to see if originating host is
on allow-list

£) How can you attack this mechanism with an honest
source IP address?

rlogin and reverse DNS

£) rlogin uses reverse DNS to see if originating host is
on allow-list

£) How can you attack this mechanism with an honest
source IP address?

£) Remember, ownership of reverse-DNS is by IP
address

Outline

Announcements intermission

Logistics updates

o) It is looking like we will grade the midterms in time
to turn back in Wednesday'’s lecture
® Exercise set 2 grading will be longer
£) Next project progress reports are due Wednesday
night

Outline

Crypto basics

-ography, -ology, -analysis

£) Cryptography (narrow sense). designing encryption
£) Cryptanalysis: breaking encryption

£) Cryptology: both of the above

£) Code (narrow sense). word-for-concept substitution
) Cipher: the “"codes” we actually care about

Caesar cipher

©) Advance three letters in alphabet:
A—-D,B—E,...

©) Decrypt by going back three letters

©) Internet-era variant: rot-13

) Easy to break if you know the principle

Keys and Kerckhoffs's principle

£) The only secret part of the cipher is a key

©) Security does not depend on anything else being
secret

£) Modern (esp. civilian, academic) crypto embraces
openness quite strongly

Symmetric vs. public key

©) Symmetric (today’s lecture): one key used by all
participants
® AKA shared key, secret key
©) Public key: one key kept secret, another published

® Techniques invented in 1970s
® Makes key distribution easier
® Depends on fancier math

Goal: secure channel

£) Leaks no content information
® Not protected: size, timing
) Messages delivered intact and in order
® Or not at all
©) Even if an adversary can read, insert, and delete
traffic

One-time pad

©) Secret key is truly random data as long as message

©) Encrypt by XOR (more generally addition mod
alphabet size)

©) Provides perfect, “information-theoretic” secrecy
£) No way to get around key size requirement

Computational security

£) More realistic: assume adversary has a limit on
computing power
£) Secure if breaking encryption is computationally
infeasible
® Eg, exponential-time brute-force search

£) Ties cryptography to complexity theory

Key sizes and security levels

o) Difficulty measured in powers of two, ignore small
constant factors

©) Power of attack measured by number of steps, aim
for better than brute force

) 232 definitely too easy, probably 2¢ too
©) Modern symmetric key size: at least 2'28

Crypto primitives

£) Base complicated systems on a minimal number of
simple operations

£) Designed to be fast, secure in wide variety of uses
£) Study those primitives very intensely

Attacks on encryption

©) Known ciphertext
® Weakest attack

©) Known plaintext (and corresponding ciphertext)
©) Chosen plaintext

©) Chosen ciphertext (and plaintext)
® Strongest version: adaptive

Certificational attacks

£) Good primitive claims no attack more effective than
brute force
£) Any break is news, even if it's not yet practical
® Canary in the coal mine

£ Eg, 21261 attack against AES-128
£) Also watched: attacks against simplified variants

Fundamental ignorance

£) We don't really know that any computational
cryptosystem is secure

) Security proof would be tantamount to proving
P #NP

©) Crypto is fundamentally more uncertain than other
parts of security

Relative proofs

£) Prove security under an unproved assumption

©) In symmetric crypto, prove a construction is secure
if the primitive is
® Often the proof looks like: if the construction is insecure,
so is the primitive
£) Can also prove immunity against a particular kind of
attack

Random oracle paradigm

£) Assume ideal model of primitives: functions selected
uniformly from a large space
® Anderson: elves in boxes
£) Not theoretically sound; assumption cannot be
satisfied

£) But seems to be safe in practice

Pseudorandomness and distinguishers

£) Claim: primitive cannot be distinguished from a truly
random counterpart
® In polynomial time with non-negligible probability
£) We can build a distinguisher algorithm to exploit any
weakness
) Slightly too strong for most practical primitives, but a
good goal

Open standards

£) How can we get good primitives?

£) Open-world best practice: run competition, invite
experts to propose then attack

©) Run by neutral experts, eg. US NIST

©) Recent good examples: AES, SHA-3

A certain three-letter agency

£) National Security Agency (NSA): has primary
responsibility for “signals intelligence”
£) Dual-mission tension:

® Break the encryption of everyone in the world
® Help US encryption not be broken by foreign powers

Outline

Stream ciphers

Stream ciphers

) Closest computational version of one-time pad

£) Key (or seed) used to generate a long
pseudorandom bitstream

) Closely related: cryptographic RNG

Shift reqgister stream ciphers

©) Linear-feedback shift register (LFSR): easy way to
generate long pseudorandom sequence
® But linearity allows for attack
©) Several ways to add non-linearity
£) Common in constrained hardware, poor security
record

RC4

£) Fast, simple, widely used software stream cipher
® Previously a trade secret, also "ARCFOUR”

£) Many attacks, none yet fatal to careful users (e.q.
TLS)
® Famous non-careful user: WEP

©) Now deprecated, not recommended for new uses

Encryption # integrity

©) Encryption protects secrecy, not message integrity

) For constant-size encryption, changing the
ciphertext just creates a different plaintext

©) How will your system handle that?
©) Always need to take care of integrity separately

Stream cipher mutability

£) Strong example of encryption vs. integrity
£ In stream cipher, flipping a ciphertext bit flips the
corresponding plaintext bit, only

£) Very convenient for targeted changes

Salsa and ChaCha

©) Published by Daniel Bernstein 2007-2008

£) Stream cipher with random access to stream
® Related to counter mode discussed later
©) Fast on general-purpose CPUs without specialized
hardware
£) Adopted as option for TLS and SSH
® Prominent early adopter: Chrome on Android

Stream cipher assessment

£) Currently out of fashion as a primitive in software

£) Not inherently insecure
® Other common pitfall: must not reuse key(stream)

Outline

Block ciphers and modes of operation

Basic idea

£) Encryption/decryption for a fixed sized block

£ Insecure if block size is too small
® Barely enough: 64 bits; current standard: 128

£) Reversible, so must be one-to-one and onto function

Pseudorandom permutation

©) Ideal model: key selects a random invertible function
0 le, permutation (PRP) on block space
® Note: not permutation on bits
£) “Strong” PRP: distinguisher can decrypt as well as
encrypt

Confusion and diffusion

£) Basic design principles articulated by Shannon

£) Confusion: combine elements so none can be
analyzed individually

) Diffusion: spread the effect of one symbol around to
others

) lterate multiple rounds of transformation

Substitution/permutation network

©) Parallel structure combining reversible elements:
©) Substitution: invertible lookup table (*S-box")
£) Permutation: shuffle bits

AES

£) Advanced Encryption Standard: NIST contest 2001
® Developed under the name Rijndael
£) 128-bit block, 128/192/256-bit key
£) Fast software implementation with lookup tables (or
dedicated insns)
£) Allowed by US government up to Top Secret

Feistel cipher

©) Split block in half, operate in turn:
(Lit1, Riz1) = (Ry, Ly @ F(R, Ky))
©) Key advantage: F need not be invertible
® Also saves space in hardware
©) Luby-Rackoff: if F is pseudo-random, 4 or more
rounds gives a strong PRP

DES

£) Data Encryption Standard: AES predecessor
1977-2005

£) 64-bit block, 56-bit key

©) Implementable in 70s hardware, not terribly fast in
software

£) Triple DES variant still used in places

Some DES history

©) Developed primarily at IBM, based on an earlier
cipher named “Lucifer”
) Final spec helped and “helped” by the NSA

® Argued for smaller key size
® S-boxes tweaked to avoid a then-secret attack

©) Eventually victim to brute-force attack

DES brute force history

1977 est. $20m cost custom hardware
1993 est. $Im cost custom hardware
1997 distributed software break

1998 $250k built ASIC hardware
2006 $10k FPGAs

2012 as-a-service against MS-CHAPv2

Double encryption?

£) Combine two different block ciphers?
® Belt and suspenders
©) Anderson: don't do it
) FS&K: could do it, not a recommendation
©) Maurer and Massey (JCrypt'93): might only be as
strong as first cipher

Modes of operation

£) How to build a cipher for arbitrary-length data from a

block cipher
£) Many approaches considered
® For some reason, most have three-letter acronyms

£) More recently: properties susceptible to relative
proof

ECB

) Electronic CodeBook

©) Split into blocks, apply cipher to each one individually
©) Leaks equalities between plaintext blocks

£) Almost never suitable for general use

Do not use ECB

CBC

) Cipher Block Chaining
0C =E(Pi® Ciq)
) Probably most popular in current systems

©) Plaintext changes propagate forever, ciphertext
changes only one block

CBC: getting an IV

) C is called the initialization vector (IV)
® Must be known for decryption
) IV should be random-looking

® To prevent first-block equalities from leaking (lesser
version of ECB problem)

£) Common approaches

® Generate at random
® Encrypt a nonce

Stream modes: OFB, CTR

) Output FeedBack: produce keystream by repeatedly
encrypting the IV
® Danger: collisions lead to repeated keystream
£) Counter: produce from encryptions of an
incrementing value

® Recently becoming more popular: allows parallelization
and random access

