CSci 5271 Introduction to Computer Security Day 12: OS security: higher assurance

Stephen McCamant University of Minnesota, Computer Science & Engineering

Outline

Multilevel and mandatory access control, cont'd

Side and covert channels

Announcements intermission

OS trust and assurance

Multilateral security / compartments In classification, want finer divisions based on need-to-know Also, selected wider sharing (e.g., with allied nations) Many other applications also have this character Anderson's example: medical data How to adapt BLP-style MAC? Partial orders and lattices Section (Compartments) Partial orders and lattices Section (Compartments) Section (Compartments

Another notation

 $\begin{array}{l} \mbox{Faculty} & \rightarrow \mbox{(Faculty, } \varnothing \mbox{)} \\ \mbox{Faculty//5271} & \rightarrow \mbox{(Faculty, } \{5271\}\mbox{)} \\ \mbox{Faculty//5271//8271} & \rightarrow \mbox{(Faculty, } \{5271, 8271\}\mbox{)} \end{array}$

MLS operating systems

- 1970s timesharing, including Multics
- "Trusted" versions of commercial Unix (e.g. Solaris)
- SELinux (called "type enforcement")
- Integrity protections in Windows Vista and later

Multi-VM systems

- One (e.g., Windows) VM for each security level
- More trustworthy OS underneath provides limited interaction
- 🖲 E.g., NSA NetTop: VMWare on SELinux
- Downside: administrative overhead

Air gaps, pumps, and diodes

- The lack of a connection between networks of different levels is called an *air gap*
- A pump transfers data securely from one network to another
- A data diode allows information flow in only one direction

Chelsea Manning cables leak

- Manning was an intelligence analyst deployed to Iraq
- PC in a T-SCIF connected to SIPRNet (Secret), air gapped
- CD-RWs used for backup and software transfer
- Contrary to policy: taking such a CD-RW home in your pocket http://www.fas.org/sgp/jud/manning/022813-statement.pdf

OutlineUnintentional information flowMultilevel and mandatory access control, cont'dGeneralizing from the last section, want to secure all
ways information can get revealedSide and covert channelsIt is important to consider all the ways this can
happen, even unintentionalAnnouncements intermissionThis is a never-ending area of security research, and
sometimes a serious vulnerability

Digital side channels

- Reveal information while staying inside the computer abstraction:
 - You can't read a file, but the error message reveals that it exists
 - Running time of an operation depends on what else is running

Covert channels

- In a side channel, the source of information is an unsuspecting victim
- In a covert channel, the source and receive work together to transmit information (contrary to a policy)
- Sometimes the channel can be the same, it's just a matter of usage

Exam analogy

- Side channel: the sound of many people erasing indicates that an exam question is difficult
- Covert channel: cough once if the answer is "true", twice if it is "false"

Timing channels

- One common source of side/covert channels is effects on the amount of time operations take
- Lots of factors affect performance of computer operations
- There are many ways to measure the passage of time
 - E.g., with parallel operations even without a clock

Classic: SSH keystroke timing

- When typing your password, keys are sent one by one but encrypted
- Longer delays may mean that keys are farther apart
- Statistics and machine learning are often used in decoding

Outline

Multilevel and mandatory access control, cont'd

Side and covert channels

Announcements intermission

OS trust and assurance

Exercise set 2

Exercise set 2, covering more memory safety and OS security, is now available on the course public web site

- 🖲 Due Friday night at 11:59pm
- Last question relates to the lattice model we just covered

Lecture topics and the midterm

- This set of slides are the last material that will be covered on the midterm
- Recall that the midterm will be on Wednesday, October 23rd, in class
- (More info/reminders about the midterm will be upcoming)

Outline

Multilevel and mandatory access control, cont'd

Side and covert channels

Announcements intermission

OS trust and assurance

Trusted and trustworthy

- Part of your system is trusted if its failure can break your security
- 🖲 Thus, OS is almost always trusted
- Real question: is it trustworthy?
- Distinction not universally observed: trusted boot, Trusted Solaris, etc.

Trusted (I/O) path

How do you know you're talking to the right software?

And no one is sniffing the data?

- 🖲 Example: Trojan login screen
 - Or worse: unlock screensaver with root password
 - Origin of "Press Ctrl-Alt-Del to log in"

Minimizing trust

- Reference monitor concept
- TCB size: measured relative to a policy goal
- Reference monitor
 TCB
 But hard to build monitor for all goals

How to gain assurance Use for a long time Testing Code / design review Third-party certification Formal methods / proof

Evaluation / certification

- Testing and review performed by an independent party
- Goal: separate incentives, separate accountability
- Compare with financial auditing
- Watch out for: form over substance, misplaced incentives

Common Criteria

- International standard and agreement for IT security certification
- Certification against a protection profile, and evaluation assurance level EAL 1-7
- Evaluation performed by non-government labs
- Up to EAL 4 automatically cross-recognized

Common Criteria, Anderson's view

Many profiles don't specify the right things

- OSes evaluated only in unrealistic environments
 - E.g., unpatched Windows XP with no network attacks

🖲 "Corruption, Manipulation, and Inertia"

- Pernicious innovation: evaluation paid for by vendor
- Labs beholden to national security apparatus

Formal methods and proof

- Can math come to the rescue?
- Checking design vs. implementation
- Automation possible only with other tradeoffs E.g., bounded size model
- Starting to become possible: machine-checked proof

Proof and complexity

- Formal proof is only feasible for programs that are small and elegant
- If you honestly care about assurance, you want your TCB small and elegant anyway
- Should provability further guide design?

Some hopeful proof results

seL4 microkernel (SOSP'09 and ongoing)

 7.5 kL C, 200 kL proof, 160 bugs fixed, 25 person years
 CompCert C-subset compiler (PLDI'06 and ongoing)
 RockSalt SFI verifier (PLDI'12)