
CSci 5271
Introduction to Computer Security

Day 9: OS security basics
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Preview question

In the Unix access control model, subjects are primarily
identified by their:

A. email address

B. username

C. executable inode

D. program name

E. UID

Outline
Secure use of the OS, con’t

Bernstein’s perspective

Techniques for privilege separation

Announcements intermission

OS security: protection and isolation

OS security: authentication

Basics of access control

Unix-style access control

Give up privileges

Using appropriate combinations of set*id functions
Alas, details differ between Unix variants

Best: give up permanently

Second best: give up temporarily

Detailed recommendations: Setuid Demystified
(USENIX’02)

Allow-list environment variables

Can change the behavior of called program in
unexpected ways
Decide which ones are necessary

As few as possible

Save these, remove any others

Outline
Secure use of the OS, con’t

Bernstein’s perspective

Techniques for privilege separation

Announcements intermission

OS security: protection and isolation

OS security: authentication

Basics of access control

Unix-style access control

Historical background

Traditional Unix MTA: Sendmail (BSD)
Monolithic setuid root program
Designed for a more trusting era
In mid-90s, bugs seemed endless

Spurred development of new, security-oriented
replacements

Bernstein’s qmail
Venema et al.’s Postfix

Distinctive qmail features

Single, security-oriented developer

Architecture with separate programs and UIDs

Replacements for standard libraries

Deliveries into directories rather than large files

Ineffective privilege separation

Example: prevent Netscape DNS helper from
accessing local file system
Before: bug in DNS code
! read user’s private files

After: bug in DNS code
! inject bogus DNS results
! man-in-the-middle attack
! read user’s private web data

Effective privilege separation

Transformations with constrained I/O

General argument: worst adversary can do is control
output

Which is just the benign functionality

MTA header parsing (Sendmail bug)

jpegtopnm inside xloadimage

Eliminating bugs

Enforce explicit data flow

Simplify integer semantics

Avoid parsing

Generalize from errors to inputs

Eliminating code

Identify common functions

Automatically handle errors

Reuse network tools

Reuse access controls

Reuse the filesystem

The “qmail security guarantee”

$500, later $1000 offered for security bug

Never paid out

Issues proposed:
Memory exhaustion DoS
Overflow of signed integer indexes

Defensiveness does not encourage more
submissions

qmail today

Originally had terms that prohibited modified
redistribution

Now true public domain

Latest release from Bernstein: 1998; netqmail: 2007

Does not have large market share

All MTAs, even Sendmail, are more secure now

Outline
Secure use of the OS, con’t

Bernstein’s perspective

Techniques for privilege separation

Announcements intermission

OS security: protection and isolation

OS security: authentication

Basics of access control

Unix-style access control

Restricted languages

Main application: code provided by untrusted parties

Packet filters in the kernel

JavaScript in web browsers
Also Java, Flash ActionScript, etc.

SFI

Software-based Fault Isolation

Instruction-level rewriting like (but predates) CFI

Limit memory stores and sometimes loads

Can’t jump out except to designated points

E.g., Google Native Client

Separate processes

OS (and hardware) isolate one process from another

Pay overhead for creation and communication

System call interface allows many possibilities for
mischief

System-call interposition

Trusted process examines syscalls made by
untrusted

Implement via ptrace (like strace, gdb) or via kernel
change

Easy policy: deny

Interposition challenges

Argument values can change in memory (TOCTTOU)

OS objects can change (TOCTTOU)

How to get canonical object identifiers?

Interposer must accurately model kernel behavior

Details: Garfinkel (NDSS’03)

Separate users

Reuse OS facilities for access control

Unit of trust: program or application

Older example: qmail

Newer example: Android

Limitation: lots of things available to any user

chroot

Unix system call to change root directory

Restrict/virtualize file system access

Only available to root

Does not isolate other namespaces

OS-enabled containers

One kernel, but virtualizes all namespaces

FreeBSD jails, Linux LXC, Solaris zones, etc.

Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

Presents hardware-like interface to an untrusted
kernel

Strong isolation, full administrative complexity

I/O interface looks like a network, etc.

Virtual machine designs

(Type 1) hypervisor: ‘superkernel’ underneath VMs

Hosted: regular OS underneath VMs

Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

Hardware based: fastest, now common

Partial translation: e.g., original VMware

Full emulation: e.g. QEMU proper
Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

Separates “browser kernel” from less-trusted
“rendering engine”

Pragmatic, keeps high-risk components together

Experimented with various Windows and Linux
sandboxing techniques

Blocked 70% of historic vulnerabilities, not all new
ones

http://seclab.stanford.edu/websec/chromium/

Outline
Secure use of the OS, con’t

Bernstein’s perspective

Techniques for privilege separation

Announcements intermission

OS security: protection and isolation

OS security: authentication

Basics of access control

Unix-style access control

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Outline
Secure use of the OS, con’t

Bernstein’s perspective

Techniques for privilege separation

Announcements intermission

OS security: protection and isolation

OS security: authentication

Basics of access control

Unix-style access control

OS security topics

Resource protection

Process isolation

User authentication

Access control

Protection and isolation

Resource protection: prevent processes from
accessing hardware

Process isolation: prevent processes from interfering
with each other

Design: by default processes can do neither

Must request access from operating system

Reference monitor

Complete mediation: all accesses are checked

Tamperproof: the monitor is itself protected from
modification

Small enough to be thoroughly verified

Hardware basis: memory protection

Historic: segments

Modern: paging and page protection
Memory divided into pages (e.g. 4k)
Every process has own virtual to physical page table
Pages also have R/W/X permissions

Linux example Hardware basis: supervisor bit

Supervisor (kernel) mode: all instructions available

User mode: no hardware or VM control instructions

Only way to switch to kernel mode is specified entry
point

Also generalizes to multiple “rings”

Outline
Secure use of the OS, con’t

Bernstein’s perspective

Techniques for privilege separation

Announcements intermission

OS security: protection and isolation

OS security: authentication

Basics of access control

Unix-style access control

Authentication factors

Something you know (password, PIN)

Something you have (e.g., smart card)

Something you are (biometrics)

CAPTCHAs, time and location, . . .

Multi-factor authentication

Passwords: love to hate

Many problems for users, sysadmins, researchers

But familiar and near-zero cost of entry

User-chosen passwords proliferate for low-stakes
web site authentication

Password entropy

Model password choice as probabilistic process

If uniform, log2 jSj

Controls difficulty of guessing attacks

Hard to estimate for user-chosen passwords
Length is an imperfect proxy

Password hashing

Idea: don’t store password or equivalent information

Password ‘encryption’ is a long-standing misnomer
E.g., Unix crypt(3)

Presumably hard-to-invert function h

Store only h(p)

Dictionary attacks

Online: send guesses to server

Offline: attacker can check guesses internally

Specialized password lists more effective than literal
dictionaries

Also generation algorithms (s ! $, etc.)

�25% of passwords consistently vulnerable

Better password hashing

Generate random salt s, store (s; h(s; p))

Block pre-computed tables and equality inferences
Salt must also have enough entropy

Deliberately expensive hash function
AKA password-based key derivation function (PBKDF)
Requirement for time and/or space

Password usability

User compliance can be a major challenge
Often caused by unrealistic demands

Distributed random passwords usually unrealistic

Password aging: not too frequently

Never have a fixed default password in a product

Backup authentication

Desire: unassisted recovery from forgotten password

Fall back to other presumed-authentic channel
Email, cell phone

Harder to forget (but less secret) shared information
Mother’s maiden name, first pet’s name

Brittle: ask Sarah Palin or Mat Honan

Centralized authentication

Enterprise-wide (e.g., UMN ID)

Anderson: Microsoft Passport

Today: Facebook Connect, Google ID

May or may not be single-sign-on (SSO)

Biometric authentication

Authenticate by a physical body attribute

+ Hard to lose

- Hard to reset

- Inherently statistical

- Variation among people

Example biometrics

(Handwritten) signatures

Fingerprints, hand geometry

Face and voice recognition

Iris codes

Error rates: ROC curve Outline
Secure use of the OS, con’t

Bernstein’s perspective

Techniques for privilege separation

Announcements intermission

OS security: protection and isolation

OS security: authentication

Basics of access control

Unix-style access control

Mechanism and policy

Decision-making aspect of OS

Should subject S (user or process) be allowed to
access object (e.g., file) O?

Complex, since admin must specify what should
happen

Access control matrix

grades.txt /dev/hda /usr/bin/bcvi
Alice r rw rx
Bob rw - rx

Carol r - rx

Slicing the matrix

O(nm) matrix impractical to store, much less
administer
Columns: access control list (ACL)

Convenient to store with object
E.g., Unix file permissions

Rows: capabilities
Convenient to store by subject
E.g., Unix file descriptors

Groups/roles

Simplify by factoring out commonality

Before: users have permissions

After: users have roles, roles have permissions

Simple example: Unix groups

Complex versions called role-based access control
(RBAC)

Outline
Secure use of the OS, con’t

Bernstein’s perspective

Techniques for privilege separation

Announcements intermission

OS security: protection and isolation

OS security: authentication

Basics of access control

Unix-style access control

UIDs and GIDs

To kernel, users and groups are just numeric
identifiers
Names are a user-space nicety

E.g., /etc/passwd mapping

Historically 16-bit, now 32

User 0 is the special superuser root
Exempt from all access control checks

File mode bits

Core permissions are 9 bits, three groups of three

Read, write, execute for user, group, other

ls format: rwx r-x r--

Octal format: 0754

Interpretation of mode bits

File also has one user and group ID

Choose one set of bits
If users match, use user bits
If subject is in the group, use group bits
Otherwise, use other bits

Note no fallback, so can stop yourself or have
negative groups

But usually, O � G � U

Directory mode bits

Same bits, slightly different interpretation

Read: list contents (e.g., ls)

Write: add or delete files

Execute: traverse

X but not R means: have to know the names

Process UIDs and setuid(2)

UID is inherited by child processes, and an
unprivileged process can’t change it

But there are syscalls root can use to change the
UID, starting with setuid

E.g., login program, SSH server

Setuid programs, different UIDs

If 04000 “setuid” bit set, newly exec’d process will
take UID of its file owner

Other side conditions, like process not traced

Specifically the effective UID is changed, while the
real UID is unchanged

Shows who called you, allows switching back

More different UIDs

Two mechanisms for temporary switching:
Swap real UID and effective UID (BSD)
Remember saved UID, allow switching to it (System V)

Modern systems support both mechanisms at the
same time
Linux only: file-system UID

Once used for NFS servers, now mostly obsolete

Setgid, games

Setgid bit 02000 mostly analogous to setuid

But note no supergroup, so UID 0 is still special

Classic application: setgid games for managing
high-score files

Special case: /tmp

We’d like to allow anyone to make files in /tmp

So, everyone should have write permission

But don’t want Alice deleting Bob’s files

Solution: “sticky bit” 01000

Special case: group inheritance

When using group to manage permissions, want a
whole tree to have a single group
When 02000 bit set, newly created entries with
have the parent’s group

(Historic BSD behavior)

Also, directories will themselves inherit 02000

Other permission rules

Only file owner or root can change permissions

Only root can change file owner
Former System V behavior: “give away chown”

Setuid/gid bits cleared on chown

Set owner first, then enable setuid

Non-checks

File permissions on stat

File permissions on link, unlink, rename

File permissions on read, write

Parent directory permissions generally
Except traversal
I.e., permissions not automatically recursive

“POSIX” ACLs

Based on a withdrawn standardization

More flexible permissions, still fairly Unix-like

Multiple user and group entries
Decision still based on one entry

Default ACLs: generalize group inheritance

Command line: getfacl, setfacl

ACL legacy interactions

Hard problem: don’t break security of legacy code
Suggests: “fail closed”

Contrary pressure: don’t want to break functionality
Suggests: “fail open”

POSIX ACL design: old group permission bits are a
mask on all novel permissions

“POSIX” “capabilities”

Divide root privilege into smaller (�35) pieces

Note: not real capabilities

First runtime only, then added to FS similar to setuid

Motivating example: ping

Also allows permanent disabling

Privilege escalation dangers

Many pieces of the root privilege are enough to
regain the whole thing

Access to files as UID 0
CAP DAC OVERRIDE

CAP FOWNER

CAP SYS MODULE

CAP MKNOD

CAP PTRACE

CAP SYS ADMIN (mount)

Legacy interaction dangers

Former bug: take away capability to drop privileges

Use of temporary files by no-longer setuid programs

For more details: “Exploiting capabilities”, Emeric Nasi

Next time

Object capability systems

Mandatory access control

Information-flow security

