
CSci 5271
Introduction to Computer Security

Day 8: Defensive programming and design, part 2
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

More secure design principles, cont’d

Software engineering for security

Announcements intermission

Secure use of the OS

Bernstein’s perspective

Techniques for privilege separation

Pop quiz

What’s the type of the return value of getchar?

Why?

Separate the control plane

Keep metadata and code separate from untrusted
data

Bad: format string vulnerability

Bad: old telephone systems

Defense in depth

Multiple levels of protection can be better than one

Especially if none is perfect

But, many weak security mechanisms don’t add up

Canonicalize names

Use unique representations of objects

E.g. in paths, remove ., .., extra slashes, symlinks

E.g., use IP address instead of DNS name

Fail-safe / fail-stop

If something goes wrong, behave in a way that’s safe

Often better to stop execution than continue in
corrupted state

E.g., better segfault than code injection

Outline

More secure design principles, cont’d

Software engineering for security

Announcements intermission

Secure use of the OS

Bernstein’s perspective

Techniques for privilege separation

Modularity

Divide software into pieces with well-defined
functionality
Isolate security-critical code

Minimize TCB, facilitate privilege separation
Improve auditability

Minimize interfaces

Hallmark of good modularity: clean interface

Particularly difficult:
Safely implementing an interface for malicious users
Safely using an interface with a malicious implementation

Appropriate paranoia

Many security problems come down to missing
checks

But, it isn’t possible to check everything continuously

How do you know when to check what?

Invariant

A fact about the state of a program that should
always be maintained

Assumed in one place to guarantee in another

Compare: proof by induction

Pre- and postconditions

Invariants before and after execution of a function

Precondition: should be true before call

Postcondition: should be true after return

Dividing responsibility

Program must ensure nothing unsafe happens

Pre- and postconditions help divide that
responsibility without gaps

When to check

At least once before any unsafe operation

If the check is fast

If you know what to do when the check fails

If you don’t trust
your caller to obey a precondition
your callee to satisfy a postcondition
yourself to maintain an invariant

Sometimes you can’t check

Check that p points to a null-terminated string

Check that fp is a valid function pointer

Check that x was not chosen by an attacker

Error handling

Every error must be handled
I.e, program must take an appropriate response action

Errors can indicate bugs, precondition violations, or
situations in the environment

Error codes

Commonly, return value indicates error if any

Bad: may overlap with regular result

Bad: goes away if ignored

Exceptions

Separate from data, triggers jump to handler

Good: avoid need for manual copying, not dropped

May support: automatic cleanup (finally)

Bad: non-local control flow can be surprising

Testing and security

“Testing shows the presence, not the absence of
bugs” – Dijkstra
Easy versions of some bugs can be found by
targeted tests:

Buffer overflows: long strings
Integer overflows: large numbers
Format string vulnerabilities: %x

Fuzz testing

Random testing can also sometimes reveal bugs

Original ‘fuzz’ (Miller): program </dev/urandom

Even this was surprisingly effective

Modern fuzz testing

Mutation fuzzing: small random changes to a benign
seed input

Complex benign inputs help cover interesting functionality

Grammar-based fuzzing: randomly select valid inputs

Coverage-driven fuzzing: build off of tests that cause
new parts of the program to execute

Automatically learns what inputs are “interesting”
Pioneered in the open-source AFL tool

Outline

More secure design principles, cont’d

Software engineering for security

Announcements intermission

Secure use of the OS

Bernstein’s perspective

Techniques for privilege separation

Exercise set 1

Due this Wednesday 10/2 by 11:59pm

Gradescope submission page and templates now
available
In addition to office hours, ask questions on Piazza

Spoiler-free clarification questions benefit other students
too

Project progress meetings

Expect invitations out later tonight,

For meetings the rest of this week

Outline

More secure design principles, cont’d

Software engineering for security

Announcements intermission

Secure use of the OS

Bernstein’s perspective

Techniques for privilege separation

Avoid special privileges

Require users to have appropriate permissions
Rather than putting trust in programs

Anti-pattern 1: setuid/setgid program

Anti-pattern 2: privileged daemon

But, sometimes unavoidable (e.g., email)

One slide on setuid/setgid

Unix users and process have a user id number (UID)
as well as one or more group IDs

Normally, process has the IDs of the use who starts
it

A setuid program instead takes the UID of the
program binary

Don’t use shells or Tcl

. . . in security-sensitive applications

String interpretation and re-parsing are very hard to
do safely

Eternal Unix code bug: path names with spaces

Prefer file descriptors

Maintain references to files by keeping them open
and using file descriptors, rather than by name

References same contents despite file system
changes

Use openat, etc., variants to use FD instead of
directory paths

Prefer absolute paths

Use full paths (starting with /) for programs and files

$PATH under local user control

Initial working directory under local user control
But FD-like, so can be used in place of openat if missing

Prefer fully trusted paths

Each directory component in a path must be write
protected

Read-only file in read-only directory can be changed
if a parent directory is modified

Don’t separate check from use

Avoid pattern of e.g., access then open

Instead, just handle failure of open
You have to do this anyway

Multiple references allow races
And access also has a history of bugs

Be careful with temporary files

Create files exclusively with tight permissions and
never reopen them

See detailed recommendations in Wheeler

Not quite good enough: reopen and check matching
device and inode

Fails with sufficiently patient attack

Give up privileges

Using appropriate combinations of set*id functions
Alas, details differ between Unix variants

Best: give up permanently

Second best: give up temporarily

Detailed recommendations: Setuid Demystified
(USENIX’02)

Allow-list environment variables

Can change the behavior of called program in
unexpected ways
Decide which ones are necessary

As few as possible

Save these, remove any others

Outline

More secure design principles, cont’d

Software engineering for security

Announcements intermission

Secure use of the OS

Bernstein’s perspective

Techniques for privilege separation

Historical background

Traditional Unix MTA: Sendmail (BSD)
Monolithic setuid root program
Designed for a more trusting era
In mid-90s, bugs seemed endless

Spurred development of new, security-oriented
replacements

Bernstein’s qmail
Venema et al.’s Postfix

Distinctive qmail features

Single, security-oriented developer

Architecture with separate programs and UIDs

Replacements for standard libraries

Deliveries into directories rather than large files

Ineffective privilege separation

Example: prevent Netscape DNS helper from
accessing local file system
Before: bug in DNS code
! read user’s private files

After: bug in DNS code
! inject bogus DNS results
! man-in-the-middle attack
! read user’s private web data

Effective privilege separation

Transformations with constrained I/O

General argument: worst adversary can do is control
output

Which is just the benign functionality

MTA header parsing (Sendmail bug)

jpegtopnm inside xloadimage

Eliminating bugs

Enforce explicit data flow

Simplify integer semantics

Avoid parsing

Generalize from errors to inputs

Eliminating code

Identify common functions

Automatically handle errors

Reuse network tools

Reuse access controls

Reuse the filesystem

The “qmail security guarantee”

$500, later $1000 offered for security bug

Never paid out

Issues proposed:
Memory exhaustion DoS
Overflow of signed integer indexes

Defensiveness does not encourage more
submissions

qmail today

Originally had terms that prohibited modified
redistribution

Now true public domain

Latest release from Bernstein: 1998; netqmail: 2007

Does not have large market share

All MTAs, even Sendmail, are more secure now

Outline

More secure design principles, cont’d

Software engineering for security

Announcements intermission

Secure use of the OS

Bernstein’s perspective

Techniques for privilege separation

Restricted languages

Main application: code provided by untrusted parties

Packet filters in the kernel

JavaScript in web browsers
Also Java, Flash ActionScript, etc.

SFI

Software-based Fault Isolation

Instruction-level rewriting like (but predates) CFI

Limit memory stores and sometimes loads

Can’t jump out except to designated points

E.g., Google Native Client

Separate processes

OS (and hardware) isolate one process from another

Pay overhead for creation and communication

System call interface allows many possibilities for
mischief

System-call interposition

Trusted process examines syscalls made by
untrusted

Implement via ptrace (like strace, gdb) or via kernel
change

Easy policy: deny

Interposition challenges

Argument values can change in memory (TOCTTOU)

OS objects can change (TOCTTOU)

How to get canonical object identifiers?

Interposer must accurately model kernel behavior

Details: Garfinkel (NDSS’03)

Separate users

Reuse OS facilities for access control

Unit of trust: program or application

Older example: qmail

Newer example: Android

Limitation: lots of things available to any user

chroot

Unix system call to change root directory

Restrict/virtualize file system access

Only available to root

Does not isolate other namespaces

OS-enabled containers

One kernel, but virtualizes all namespaces

FreeBSD jails, Linux LXC, Solaris zones, etc.

Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

Presents hardware-like interface to an untrusted
kernel

Strong isolation, full administrative complexity

I/O interface looks like a network, etc.

Virtual machine designs

(Type 1) hypervisor: ‘superkernel’ underneath VMs

Hosted: regular OS underneath VMs

Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

Hardware based: fastest, now common

Partial translation: e.g., original VMware

Full emulation: e.g. QEMU proper
Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

Separates “browser kernel” from less-trusted
“rendering engine”

Pragmatic, keeps high-risk components together

Experimented with various Windows and Linux
sandboxing techniques

Blocked 70% of historic vulnerabilities, not all new
ones

http://seclab.stanford.edu/websec/chromium/

Next time

Protection and isolation

Basic (e.g., classic Unix) access control

