CSci 5271
Introduction to Computer Security
Day 8: Defensive programming and design, part 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

More secure design principles, contd

Pop quiz

©) What's the type of the return value of getchar?
) Why?

Separate the control plane

£) Keep metadata and code separate from untrusted
data

£) Bad: format string vulnerability
£) Bad: old telephone systems

Defense in depth

©) Multiple levels of protection can be better than one
©) Especially if none is perfect
£) But, many weak security mechanisms don't add up

Canonicalize names

£) Use unique representations of objects
£ Eg. in paths, remove ., . ., extra slashes, symlinks
) Eg, use IP address instead of DNS name

Fail-safe / fail-stop

©) If something goes wrong, behave in a way that's safe

) Often better to stop execution than continue in
corrupted state

©) Eg, better segfault than code injection

Outline

Software engineering for security




Modularity

) Divide software into pieces with well-defined
functionality
©) Isolate security-critical code

® Minimize TCB, facilitate privilege separation
® Improve auditability

Minimize interfaces

©) Hallmark of good modularity: clean interface

£) Particularly difficult;

® Safely implementing an interface for malicious users
® Safely using an interface with a malicious implementation

Appropriate paranoia

£) Many security problems come down to missing
checks

©) But, it isn't possible to check everything continuously
£) How do you know when to check what?

Invariant

£) A fact about the state of a program that should
always be maintained

£) Assumed in one place to guarantee in another
£) Compare: proof by induction

Pre- and postconditions

©) Invariants before and after execution of a function
©) Precondition: should be true before call
) Postcondition: should be true after return

Dividing responsibility

£) Program must ensure nothing unsafe happens

£) Pre- and postconditions help divide that
responsibility without gaps

When to check

£) At least once before any unsafe operation
o) If the check is fast
o) If you know what to do when the check fails

o If you don't trust
® your caller to obey a precondition
® your callee to satisfy a postcondition
® yourself to maintain an invariant

Sometimes you can't check

£) Check that p points to a null-terminated string
©) Check that fp is a valid function pointer
£) Check that x was not chosen by an attacker




Error handling

©) Every error must be handled
® l.e, program must take an appropriate response action

©) Errors can indicate bugs, precondition violations, or
situations in the environment

Error codes

£) Commonly, return value indicates error if any
£) Bad: may overlap with regular result
£) Bad: goes away if ignored

Exceptions

©) Separate from data, triggers jump to handler

£) Good: avoid need for manual copying, not dropped
©) May support: automatic cleanup (finally)

£) Bad: non-local control flow can be surprising

Testing and security

£) “Testing shows the presence, not the absence of
bugs” - Dijkstra
£) Easy versions of some bugs can be found by
targeted tests:
® Buffer overflows: long strings
® Integer overflows: large numbers
® Format string vulnerabilities: %x

Fuzz testing

©) Random testing can also sometimes reveal bugs
©) Original ‘fuzz’ (Miller): program </dev/urandom
©) Even this was surprisingly effective

Modern fuzz testing

£) Mutation fuzzing: small random changes to a benign
seed input
= Complex benign inputs help cover interesting functionality
£) Grammar-based fuzzing: randomly select valid inputs
) Coverage-driven fuzzing: build off of tests that cause
new parts of the program to execute

® Automatically learns what inputs are “interesting”
® Pioneered in the open-source AFL tool

Outline

Announcements intermission

Exercise set 1

£) Due this Wednesday 10/2 by 1:59pm

£) Gradescope submission page and templates now
available

£ In addition to office hours, ask questions on Piazza

® Spoiler-free clarification questions benefit other students
too




Project progress meetings

©) Expect invitations out later tonight,
©) For meetings the rest of this week

Outline

Secure use of the 0OS

Avoid special privileges

£) Require users to have appropriate permissions
® Rather than putting trust in programs

©) Anti-pattern 1. setuid/setgid program
©) Anti-pattern 2: privileged daemon
©) But, sometimes unavoidable (e.g., email)

One slide on setuid/setqgid

£) Unix users and process have a user id number (UID)
as well as one or more group IDs

£ Normally, process has the IDs of the use who starts
it

©) A setuid program instead takes the UID of the
program binary

Don't use shells or Tcl

£) ...in security-sensitive applications

©) String interpretation and re-parsing are very hard to
do safely

©) Eternal Unix code bug: path names with spaces

Prefer file descriptors

£) Maintain references to files by keeping them open
and using file descriptors, rather than by name

©) References same contents despite file system
changes

£) Use openat, etc,, variants to use FD instead of
directory paths

Prefer absolute paths

£) Use full paths (starting with /) for programs and files
©) $PATH under local user control

o) Initial working directory under local user control
® But FD-like, so can be used in place of openat if missing

Prefer fully trusted paths

£) Each directory component in a path must be write
protected

£) Read-only file in read-only directory can be changed
if a parent directory is modified




Don't separate check from use

©) Avoid pattern of eg, access then open
©) Instead, just handle failure of open

® You have to do this anyway
©) Multiple references allow races

® And access also has a history of bugs

Be careful with temporary files

£) Create files exclusively with tight permissions and
never reopen them
® See detailed recommendations in Wheeler
£) Not quite good enough: reopen and check matching

device and inode
® Fails with sufficiently patient attack

Give up privileges

©) Using appropriate combinations of set*id functions

® Alas, details differ between Unix variants
©) Best: give up permanently
£) Second best: give up temporarily

) Detailed recommendations: Setuid Demystified
(USENIX'02)

Allow-list environment variables

£) Can change the behavior of called program in
unexpected ways
£) Decide which ones are necessary
® As few as possible

£) Save these, remove any others

Outline

Bernstein’s perspective

Historical background

£) Traditional Unix MTA: Sendmail (BSD)
® Monolithic setuid root program
® Designed for a more trusting era
® In mid-90s, bugs seemed endless
©) Spurred development of new, security-oriented
replacements
® Bernstein's gmail
® Venema et al’s Postfix

Distinctive gmail features

) Single, security-oriented developer

£) Architecture with separate programs and UIDs
©) Replacements for standard libraries

) Deliveries into directories rather than large files

Ineffective privilege separation

©) Example: prevent Netscape DNS helper from
accessing local file system
) Before: bug in DNS code
— read user’s private files
£) After: bug in DNS code

— inject bogus DNS results
— man-in-the-middle attack
— read user’s private web data




Effective privilege separation

©) Transformations with constrained 1/0

£) General argument: worst adversary can do is control
output
® Which is just the benign functionality

£) MTA header parsing (Sendmail bug)
£) jpegtopnm inside xloadimage

Eliminating bugs

©) Enforce explicit data flow

©) Simplify integer semantics

£) Avoid parsing

£) Generalize from errors to inputs

Eliminating code

©) Identify common functions
©) Automatically handle errors
©) Reuse network tools

©) Reuse access controls

©) Reuse the filesystem

”

The “gmail security guarantee

£) $500, later $1000 offered for security bug
£) Never paid out

£) Issues proposed:

® Memory exhaustion DoS
® Overflow of signed integer indexes

) Defensiveness does not encourage more
submissions

gmail today

) Originally had terms that prohibited modified
redistribution
® Now true public domain

©) Latest release from Bernstein: 1998; netgmail: 2007
©) Does not have large market share
©) All MTAs, even Sendmail, are more secure now

Outline

Techniques for privilege separation

Restricted languages

£) Main application: code provided by untrusted parties
©) Packet filters in the kernel

©) JavaScript in web browsers
® Also Java, Flash ActionScript, etc.

SFI

) Software-based Fault Isolation

£ Instruction-level rewriting like (but predates) CFl

©) Limit memory stores and sometimes loads
£) Can't jump out except to designated points
£ Eg., Google Native Client




Separate processes

©) OS (and hardware) isolate one process from another

©) Pay overhead for creation and communication

©) System call interface allows many possibilities for
mischief

System-call interposition

£) Trusted process examines syscalls made by
untrusted

©) Implement via ptrace (like strace, gdb) or via kernel
change

£) Easy policy: deny

Interposition challenges

£) Argument values can change in memory (TOCTTOU)
£) OS objects can change (TOCTTOU)

£) How to get canonical object identifiers?

©) Interposer must accurately model kernel behavior

©) Details: Garfinkel (NDSS'03)

Separate users

£) Reuse OS facilities for access control

£ Unit of trust: program or application

©) Older example: gmail

£) Newer example: Android

©) Limitation: lots of things available to any user

chroot

£) Unix system call to change root directory
£) Restrict/virtualize file system access

©) Only available to root

©) Does not isolate other namespaces

0OS-enabled containers

£) One kernel, but virtualizes all namespaces
©) FreeBSD jails, Linux LXC, Solaris zones, etc.
©) Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

£) Presents hardware-like interface to an untrusted
kernel

©) Strong isolation, full administrative complexity

©) 1/0 interface looks like a network, etc.

Virtual machine designs

©) (Type 1) hypervisor: ‘superkernel’ underneath VMs

€) Hosted: regular OS underneath VMs

£) Paravirtualizaion: modify kernels in VMs for ease of
virtualization




Virtual machine technologies

©) Hardware based: fastest, now common
©) Partial translation: e.g,, original VMware

©) Full emulation: e.g. QEMU proper
® Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

£) Separates “browser kernel” from less-trusted
“rendering engine”
® Pragmatic, keeps high-risk components together
£) Experimented with various Windows and Linux
sandboxing techniques
) Blocked 70% of historic vulnerabilities, not all new
ones

) http://seclab.stanford.edu/websec/chromium/

Next time

©) Protection and isolation
£) Basic (e.q,, classic Unix) access control




