
CSci 5271
Introduction to Computer Security

Day 7: Defensive programming and design, part 1
Stephen McCamant

University of Minnesota, Computer Science & Engineering

ROP defense question

Which of these defense techniques would completely
prevent a ROP attack from returning from an intended
return instruction to an unintended gadget?

A. ASLR

B. A non-executable stack

C. Adjacent stack canaries

D. A shadow stack

E. A and C, but only if used together

Outline
Control-flow integrity (CFI)

Additional modern exploit techniques

Saltzer & Schroeder’s principles

Announcements intermission

More secure design principles

Software engineering for security

Secure use of the OS

Some philosophy

Remember allow-list vs. deny-list?

Rather than specific attacks, tighten behavior
Compare: type system; garbage collector vs.
use-after-free

CFI: apply to control-flow attacks

Basic CFI principle

Each indirect jump should only go to a
programmer-intended (or compiler-intended) target

I.e., enforce call graph

Often: identify disjoint target sets

Approximating the call graph

One set: all legal indirect targets

Two sets: indirect calls and return points

n sets: needs possibly-difficult points-to analysis

Target checking: classic

Identifier is a unique 32-bit value

Can embed in effectively-nop instruction

Check value at target before jump

Optionally add shadow stack

Target checking: classic

cmp [ecx], 12345678h

jne error_label

lea ecx, [ecx+4]

jmp ecx

Challenge 1: performance

In CCS’05 paper: 16% avg., 45% max.
Widely varying by program
Probably too much for on-by-default

Improved in later research
Common alternative: use tables of legal targets

Challenge 2: compatibility

Compilation information required

Must transform entire program together

Can’t inter-operate with untransformed code

How to support COTS binaries

“Commercial off-the-shelf” binaries

CCFIR (Berkeley+PKU, Oakland’13)
Use Windows ASLR info. to find targets

CFI for COTS Binaries (Stony Brook, USENIX’13)
Keep copy of original code, build translation table

Control-Flow Guard

CFI-style defense now available in Windows

Compiler generates tables of legal targets

At runtime, table managed by kernel, read-only to
user-space

Coarse-grained counter-attack

“Out of Control” paper, Oakland’14

Limit to gadgets allowed by coarse policy
Indirect call to function entry
Return to point after call site (“call-preceded”)

Use existing direct calls to VirtualProtect

Also used against kBouncer

Control-flow bending counter-attack

Control-flow attacks that still respect the CFG

Especially easy without a shadow stack

Printf-oriented programming generalizes
format-string attacks

Outline
Control-flow integrity (CFI)

Additional modern exploit techniques

Saltzer & Schroeder’s principles

Announcements intermission

More secure design principles

Software engineering for security

Secure use of the OS

Target #1: web browsers

Widely used on desktop and mobile platforms

Easily exposed to malicious code

JavaScript is useful for constructing fancy attacks

Heap spraying

How to take advantage of uncontrolled jump?

Maximize proportion of memory that is a target

Generalize NOP sled idea, using benign allocator

Under W�X, can’t be code directly

JIT spraying

Can we use a JIT compiler to make our sleds?

Exploit unaligned execution:
Benign but weird high-level code (bitwise ops. with
constants)
Benign but predictable JITted code
Becomes sled + exploit when entered unaligned

JIT spray example

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

25 90 90 90 3c and $0x3c909090,%eax

JIT spray example

90 nop

90 nop

90 nop

3c 25 cmp $0x25,%al

90 nop

90 nop

90 nop

3c 25 cmp $0x25,%al

Use-after-free

Low-level memory error of choice in web browsers

Not as easily audited as buffer overflows

Can lurk in attacker-controlled corner cases

JavaScript and Document Object Model (DOM)

Sandboxes and escape

Chrome NaCl: run untrusted native code with SFI
Extra instruction-level checks somewhat like CFI

Each web page rendered in own, less-trusted
process
But not easy to make sandboxes secure

While allowing functionality

Chained bugs in Pwnium 1

Google-run contest for complete Chrome exploits
First edition in spring 2012

Winner 1: 6 vulnerabilities

Winner 2: 14 bugs and “missed hardening
opportunities”

Each got $60k, bugs promptly fixed

Outline
Control-flow integrity (CFI)

Additional modern exploit techniques

Saltzer & Schroeder’s principles

Announcements intermission

More secure design principles

Software engineering for security

Secure use of the OS

Economy of mechanism

Security mechanisms should be as simple as
possible

Good for all software, but security software needs
special scrutiny

Fail-safe defaults

When in doubt, don’t give permission

Allow-list (whitelist), don’t deny-list (blacklist)

Obvious reason: if you must fail, fail safe

More subtle reason: incentives

Complete mediation

Every mode of access must be checked
Not just regular accesses: startup, maintenance, etc.

Checks cannot be bypassed
E.g., web app must validate on server, not just client

Open design

Security must not depend on the design being
secret
If anything is secret, a minimal key

Design is hard to keep secret anyway
Key must be easily changeable if revealed
Design cannot be easily changed

Open design: strong version

“The design should not be secret”

If the design is fixed, keeping it secret can’t help
attackers

But an unscrutinized design is less likely to be
secure

Separation of privilege

Real world: two-person principle

Direct implementation: separation of duty

Multiple mechanisms can help if they are both
required

Password and wheel group in Unix

Least privilege

Programs and users should have the most limited
set of powers needed to do their job
Presupposes that privileges are suitably divisible

Contrast: Unix root

Least privilege: privilege separation

Programs must also be divisible to avoid excess
privilege

Classic example: multi-process OpenSSH server

N.B.: Separation of privilege 6= privilege separation

Least common mechanism

Minimize the code that all users must depend on for
security

Related term: minimize the Trusted Computing Base
(TCB)

E.g.: prefer library to system call; microkernel OS

Psychological acceptability

A system must be easy to use, if users are to apply
it correctly

Make the system’s model similar to the user’s
mental model to minimize mistakes

Sometimes: work factor

Cost of circumvention should match attacker and
resource protected

E.g., length of password

But, many attacks are easy when you know the bug

Sometimes: compromise recording

Recording a security failure can be almost as good
as preventing it

But, few things in software can’t be erased by root

Outline
Control-flow integrity (CFI)

Additional modern exploit techniques

Saltzer & Schroeder’s principles

Announcements intermission

More secure design principles

Software engineering for security

Secure use of the OS

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Alternative Saltzer & Schroeder

Not a replacement for reading the real thing, but:

https://shostack.org/blog/the-security-principles-of-saltzer-and-schroeder

Security Principles of Saltzer and Schroeder,
illustrated with scenes from Star Wars (Adam
Shostack)

Outline
Control-flow integrity (CFI)

Additional modern exploit techniques

Saltzer & Schroeder’s principles

Announcements intermission

More secure design principles

Software engineering for security

Secure use of the OS

Pop quiz

What’s the type of the return value of getchar?

Why?

Separate the control plane

Keep metadata and code separate from untrusted
data

Bad: format string vulnerability

Bad: old telephone systems

Defense in depth

Multiple levels of protection can be better than one

Especially if none is perfect

But, many weak security mechanisms don’t add up

Canonicalize names

Use unique representations of objects

E.g. in paths, remove ., .., extra slashes, symlinks

E.g., use IP address instead of DNS name

Fail-safe / fail-stop

If something goes wrong, behave in a way that’s safe

Often better to stop execution than continue in
corrupted state

E.g., better segfault than code injection

Outline
Control-flow integrity (CFI)

Additional modern exploit techniques

Saltzer & Schroeder’s principles

Announcements intermission

More secure design principles

Software engineering for security

Secure use of the OS

Modularity

Divide software into pieces with well-defined
functionality
Isolate security-critical code

Minimize TCB, facilitate privilege separation
Improve auditability

Minimize interfaces

Hallmark of good modularity: clean interface

Particularly difficult:
Safely implementing an interface for malicious users
Safely using an interface with a malicious implementation

Appropriate paranoia

Many security problems come down to missing
checks

But, it isn’t possible to check everything continuously

How do you know when to check what?

Invariant

A fact about the state of a program that should
always be maintained

Assumed in one place to guarantee in another

Compare: proof by induction

Pre- and postconditions

Invariants before and after execution of a function

Precondition: should be true before call

Postcondition: should be true after return

Dividing responsibility

Program must ensure nothing unsafe happens

Pre- and postconditions help divide that
responsibility without gaps

When to check

At least once before any unsafe operation

If the check is fast

If you know what to do when the check fails

If you don’t trust
your caller to obey a precondition
your callee to satisfy a postcondition
yourself to maintain an invariant

Sometimes you can’t check

Check that p points to a null-terminated string

Check that fp is a valid function pointer

Check that x was not chosen by an attacker

Error handling

Every error must be handled
I.e, program must take an appropriate response action

Errors can indicate bugs, precondition violations, or
situations in the environment

Error codes

Commonly, return value indicates error if any

Bad: may overlap with regular result

Bad: goes away if ignored

Exceptions

Separate from data, triggers jump to handler

Good: avoid need for manual copying, not dropped

May support: automatic cleanup (finally)

Bad: non-local control flow can be surprising

Testing and security

“Testing shows the presence, not the absence of
bugs” – Dijkstra
Easy versions of some bugs can be found by
targeted tests:

Buffer overflows: long strings
Integer overflows: large numbers
Format string vulnerabilities: %x

Fuzz testing

Random testing can also sometimes reveal bugs

Original ‘fuzz’ (Miller): program </dev/urandom

Even this was surprisingly effective

Modern fuzz testing

Mutation fuzzing: small random changes to a benign
seed input

Complex benign inputs help cover interesting functionality

Grammar-based fuzzing: randomly select valid inputs

Coverage-driven fuzzing: build off of tests that cause
new parts of the program to execute

Automatically learns what inputs are “interesting”
Pioneered in the open-source AFL tool

Outline
Control-flow integrity (CFI)

Additional modern exploit techniques

Saltzer & Schroeder’s principles

Announcements intermission

More secure design principles

Software engineering for security

Secure use of the OS

Avoid special privileges

Require users to have appropriate permissions
Rather than putting trust in programs

Anti-pattern 1: setuid/setgid program

Anti-pattern 2: privileged daemon

But, sometimes unavoidable (e.g., email)

One slide on setuid/setgid

Unix users and process have a user id number (UID)
as well as one or more group IDs

Normally, process has the IDs of the use who starts
it

A setuid program instead takes the UID of the
program binary

Don’t use shells or Tcl

. . . in security-sensitive applications

String interpretation and re-parsing are very hard to
do safely

Eternal Unix code bug: path names with spaces

Prefer file descriptors

Maintain references to files by keeping them open
and using file descriptors, rather than by name

References same contents despite file system
changes

Use openat, etc., variants to use FD instead of
directory paths

Prefer absolute paths

Use full paths (starting with /) for programs and files

$PATH under local user control

Initial working directory under local user control
But FD-like, so can be used in place of openat if missing

Prefer fully trusted paths

Each directory component in a path must be write
protected

Read-only file in read-only directory can be changed
if a parent directory is modified

Don’t separate check from use

Avoid pattern of e.g., access then open

Instead, just handle failure of open
You have to do this anyway

Multiple references allow races
And access also has a history of bugs

Be careful with temporary files

Create files exclusively with tight permissions and
never reopen them

See detailed recommendations in Wheeler

Not quite good enough: reopen and check matching
device and inode

Fails with sufficiently patient attack

Give up privileges

Using appropriate combinations of set*id functions
Alas, details differ between Unix variants

Best: give up permanently

Second best: give up temporarily

Detailed recommendations: Setuid Demystified
(USENIX’02)

Allow-list environment variables

Can change the behavior of called program in
unexpected ways
Decide which ones are necessary

As few as possible

Save these, remove any others

Next time

Recommendations from the author of qmail

A variety of isolation mechanisms

