CSci 5271
Introduction to Computer Security
Day 5: Low-level defenses and counterattacks

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Shellcode techniques

Basic definition

©) Shellcode: attacker supplied instructions
implementing malicious functionality

£) Name comes from example of starting a shell
) Often requires attention to machine-language
encoding

Classic execve /bin/sh

€) execve(fname, argv, envp) System call
©) Specialized syscall calling conventions

£) Omit unneeded arguments

£) Doable in under 25 bytes for Linux/x86

Avoiding zero bytes

£) Common requirement for shellcode in C string
£) Analogy: broken O key on keyboard
£) May occur in other parts of encoding as well

More restrictions

£) No newlines

£) Only printable characters

£) Only alphanumeric characters
£) “English Shellcode” (CCS'09)

Transformations

©) Fold case, escapes, Latinl to Unicode, etc.
o) Invariant: unchanged by transformation

) Pre-image: becomes shellcode only after
transformation

Multi-stage approach

£ Initially executable portion unpacks rest from
another format

©) Improves efficiency in restricted environments

©) But self-modifying code has pitfalls

NOP sleds

£) Goal: make the shellcode an easier target to hit

©) Long sequence of no-op instructions, real shellcode
at the end
® x86: 0x90 0x90 0x90 0x90 0x90 ...shellcode

Where to put shellcode?

©) In overflowed buffer, if big enough

£) Anywhere else you can get it
® Nice to have: predictable location

£) Convenient choice of Unix local exploits:

Where to put shellcode?

Environment variables
Y ARRRRARRARRL

USER=smccfiglPATH=/bin: /usr/binfo]
ISPLAY=:BigLANG=en_US [0];i686 0]

Hcbol/et g/ 4 suefal tmpfo] poe o]

]

Environment/
AUXV strings

argv strings
auxv

argv

14096 / 1371792 15:[1] 0: ¢
E” b environment

futu re\growth

Code reuse

o) If can't get your own shellcode, use existing code

) Classic example: system implementation in C library
® “Return to libc” attack

£) More variations on this later

Outline

Exploiting other vulnerabilities

Non-control data overwrite

£) Overwrite other security-sensitive data
£) No change to program control flow
©) Set user ID to O, set permissions to all, etc.

Heap meta-data

£) Boundary tags similar to doubly-linked list
£) Overwritten on heap overflow

©) Arbitrary write triggered on free

£) Simple version stopped by sanity checks

Heap meta-data

future|growth
the
"break" | |
I]| Unallocated
|
|

‘ area

———
[Free] I1 | Medium objects
£ 11 w/ boundary tags
[Free] y tag

]| Small objects
]| bucketed by size

Use after free

£) Write to new object overwrites old, or vice-versa
£) Key issue is what heap object is reused for
©) Influence by controlling other heap operations

Integer overflows

©) Easiest to use: overflow in small (8-, 16-bit) value, or
only overflowed value used
£) 2GB write in 100 byte buffer
® Find some other way to make it stop
£) Arbitrary single overwrite
® Use math to figure out overflowing value

Null pointer dereference

£) Add offset to make a predictable pointer
® On Windows, interesting address start low
©) Allocate data on the zero page

® Most common in user-space to kernel attacks
® Read more dangerous than a write

Format string attack

£) Attacker-controlled format: little interpreter

£) Step one: add extra integer specifiers, dump stack
® Already useful for information disclosure

Format string attack layout

caller frame

printf frame

copy of
Yorex

copy of
Yrdx argument

pointer
copy of

%rsi

copy of

op i [%X %X %X %X %X
Y%rdi

Format string attack layout

caller frame

printf frame

copy of
Yorcx

copy of

Y%ordx \ argument

pointer

copy of
%rsi

copy of

>
%rdi %X %X %X %X %X

Format string attack: overwrite

©) %n specifier: store number of chars written so far to
pointer arg

©) Advance format arg pointer to other
attacker-controlled data

) Control number of chars written with padding
£) On x86, use unaligned stores to create pointer

Outline

Return address protections

Canary in the coal mine

k...__

Photo credit: Fir0002 CC-BY-SA

Adjacent canary idea

s
L% |24 (%rbp)
s
® 16(%rbp)
n
|8 (%rbp)
L srbp
-8(%rbp)

I
o9 |16 (%rbp)

lo
“top" of char(8]
stack

srsp____, [[01 |-24(%rbp)

Terminator canary

©) Value hard to reproduce because it would tell the
copy to stop
) StackGuard: 0x00 OD OA FF

® O: String functions

® newline: fgets(), etc.

8 -1 getc()

® carriage return: similar to newline?

©) Doesn't stop: memcpy, custom loops

Random canary

£) Can't reproduce because attacker can't guess
£ For efficiency, usually one per execution
£ Ineffective if disclosed

XOR canary

©) Want to protect against non-sequential overwrites
©) XOR return address with value c at entry

©) XOR again with ¢ before return

£) Standard choice for c: see random canary

Further refinements

©) More flexible to do earlier in compiler
£) Rearrange buffers after other variables
® Reduce chance of non-control overwrite

£) Skip canaries for functions with only small variables
® Who has an overflow bug in an 8-byte array?

What's usually not protected?

©) Backwards overflows

©) Function pointers

©) Adjacent structure fields

©) Adjacent static data objects

Where to keep canary value

£) Fast to access
£) Buggy code/attacker can't read or write
€) Linux/x86-64: Jfs:0x28

Complex anti-canary attack

£) Canary not updated on fork in server
£) Attacker controls number of bytes overwritten

Complex anti-canary attack

£) Canary not updated on fork in server

£) Attacker controls number of bytes overwritten
©) ANRY BNRY CNRY DNRY ENRY FNRY

) search 232 — search 4 - 28

Shadow return stack

©) Suppose you have a safe place to store the canary
©) Why not just store the return address there?

©) Needs to be a separate stack

©) Ultimate return address protection

Outline

Announcements intermission

Pre-proposals due tonight

©) Most groups formed?
£) One PDF per group, include schedule choices
£) Submit via Canvas by 1:59pm

Outline

ASLR and counterattacks

Basic idea

£) "Address Space Layout Randomization”
£) Move memory areas around randomly so attackers
can't predict addresses

©) Keep internal structure unchanged
® E.g, whole stack moves together

Code and data locations

£) Execution of code depends on memory location

) Eqg, on 32-bit x86:
m Direct jumps are relative
® Function pointers are absolute
® Data must be absolute

Relocation (Windows)

) Extension of technique already used in compilation

©) Keep table of absolute addresses, instructions on
how to update

©) Disadvantage: code modifications take time on load,
prevent sharing

PIC/PIE (GNU/Linux)

£) “Position-Independent Code / Executable”

£) Keep code unchanged, use register to point to data
area

£) Disadvantage: code complexity, register pressure
hurt performance

What's not covered

£) Main executable (Linux 32-bit PIC)
©) Incompatible DLLs (Windows)
©) Relative locations within a module/area

Entropy limitations

©) Intuitively, entropy measures amount of randomness,
in bits

£) Random 32-bit int: 32 bits of entropy

£) ASLR page aligned, so at most 32 — 12 = 20 bits of
entropy

£) Other constraints further reduce possibilities

Leakage limitations

o) If an attacker learns the randomized base address,
can reconstruct other locations

©) Any stack address — stack unprotected, etc.

GOT hijack (Miiller)

£) Main program fixed, libc randomized

£) PLT in main program used to call libc

£) Rewire PLT to call attacker's favorite libc functions
0 Eg, turn printf into system

GOT hijack (Mdiller)

printf@plt: jmp *0x8049678
system@plt: jmp *0x804967c

0x8049678: <addr of printf in libc>
0x804967c: <addr of system in libc>

ret2pop (Miiller)

£) Take advantage of shellcode pointer already present
on stack
©) Rewrite intervening stack to treat the shellcode
pointer like a return address
® A long sequence of chained returns, one pop

ret2pop (Miller)

——shellcode

Outline

WaX (DEP)

Basic idea

©) Traditional shellcode must go in a memory area that
is
® writable, so the shellcode can be inserted
® executable, so the shellcode can be executed
£) But benign code usually does not need this
combination

o W xor X, really -(W A X)

Non-writable code, X — —W

£ Eqg, read-only text section
£) Has been standard for a while, especially on Unix

£) Lets OS efficiently share code with multiple program
instances

Non-executable data, W — —X

©) Prohibit execution of static data, stack, heap

©) Not a problem for most programs

® Incompatible with some GCC features no one uses
® Non-executable stack opt-in on Linux, but now
near-universal

Implementing W & X

£) Page protection implemented by CPU
® Some architectures (eg. SPARC) long supported W ¢ X
£) x86 historically did not

® One bit controls both read and execute
® Partial stop-gap “code segment limit”

) Eventual obvious solution: add new bit
m NX (AMD), XD (Intel), XN (ARM)

One important exception

©) Remaining important use of self-modifying code:
just-in-time (JIT) compilers
® Eg, all modern JavaScript engines
©) Allow code to re-enable execution per-block

® mprotect, VirtualProtect
® Now a favorite target of attackers

Counterattack: code reuse

£) Attacker can't execute new code

©) So, take advantage of instructions already in binary
£) There are usually a lot of them

£) And no need to obey original structure

Classic return-to-libc (1997)

©) Overwrite stack with copies of:

® Pointer to libc’s system function
® Pointer to " /bin/sh" string (also in libc)

©) The systemn function is especially convenient
) Distinctive feature: return to entry point

Chained return-to-libc

£) Shellcode often wants a sequence of actions, eg.
® Restore privileges
® Allow execution of memory area
® Overwrite system file, etc.
£) Can put multiple fake frames on the stack
® Basic idea present in 1997, further refinements

Beyond return-to-libc

£) Can we do more? Oh, yes.

) Classic academic approach: what's the most we
could ask for?

©) Here: “Turing completeness”
©) How to do it: reading for Monday

Next slides

£) Return-oriented programming (ROP)
® And counter-defenses

£) Control-flow integrity (CFI)

