CSci 5271
Introduction to Computer Security
Day 4. Low-level attacks

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Where overflows come from, contd

Library funcs: unusable

©) gets writes unlimited data into supplied buffer
©) No way to use safely (unless stdin trusted)
©) Finally removed in Cli standard

Library funcs: dangerous

£) Big three unchecked string functions

® strcpy(dest, src)
®m strcat(dest, src)
® sprintf (buf, fmt, ...)

£) Must know lengths in advance to use safely
(complicated for sprintf)

©) Similar pattern in other funcs returning a string

Library funcs: bounded

©) Just add “n™

® strncpy (dest, src, n)

® strncat(dest, src, n)

® snprintf (buf, size, fmt, ...)
©) Tricky points:

® Buffer size vs. max characters to write

® Failing to terminate

® strncpy zero-fill

More library attempts

€) OpenBSD strlcpy, strlcat

® Easier to use safely than “n” versions
® Non-standard, but widely copied

©) Microsoft-pushed strcpy s, etc.

® Now standardized in Cii, but not in glibc
® Runtime checks that abort

£) Compute size and use memcpy
€) C+ std: :string, glib, etc.

Still a problem: truncation

©) Unexpectedly dropping characters from the end of

strings may still be a vulnerability

o) Eq, if attacker pads paths with /////// or
/...

©) Avoiding length limits is best, if implemented
correctly

Off-by-one bugs

£) strlen does not include the terminator
) Comparison with < vs. <=
©) Length vs. last index

) x++ VS, ++x

Even more buffer/size mistakes

©) Inconsistent code changes (use sizeof)

£) Misuse of sizeof (e.g., on pointer)

£) Bytes vs. wide chars (UCS-2) vs. multibyte chars
(UTF-8)

©) OS length limits (or lack thereof)

Other array problems

£) Missing/wrong bounds check

® One unsigned comparison suffices
® Two signed comparisons needed

£) Beware of clever loops
® Premature optimization

Outline

More problems

Integer overflow

©) Fixed size result # math result

£) Sum of two positive ints negative or less than
addend

£) Also multiplication, left shift, etc.
£) Negation of most-negative value
© (low + high)/2

Integer overflow example

int n = read_int();
obj *p = malloc(n * sizeof(obj));
for (i = 0; i < n; i++)

pli] = read_obj();

Signed and unsigned

£) Unsigned gives more range for, eg, size_t

£) At machine level, many but not all operations are the
same

£) Most important difference: ordering
£ In C, signed overflow is undefined behavior

Mixing integer sizes

£) Complicated rules for implicit conversions
® Also includes signed vs. unsigned

©) Generally, convert before operation:
mEg, 1ULL << 63

©) Sign-extend vs. zero-extend
® char ¢ = Oxff; (int)c

Null pointers

£) Vanilla null dereference is usually non-exploitable
(just a DoS)

©) But not if there could be an offset (e.g, field of struct)

©) And not in the kernel if an untrusted user has
allocated the zero page

Undefined behavior

) C standard “undefined behavior”: anything could
happen

) Can be unexpectedly bad for security

£) Most common problem: compiler optimizes
assuming undefined behavior cannot happen

Linux kernel example

struct sock *sk = tun->sk;
// ...
if (!tun)
return POLLERR;
// more uses of tun and sk

Format strings

©) printf format strings are a little interpreter

O printf (fmt) with untrusted fmt lets the attacker
program it
©) Allows:

® Dumping stack contents
® Denial of service
® Arbitrary memory modifications!

Outline

Classic code injection attacks

Overwriting the return address

24(%rbp)

16(%rbp)

/8 (%rbp)

. srbp

-8(%rbp)

109 |16 (%rbp)

"top" of ar(24]
stack

%rsp 101 |-40(%rbp)

Collateral damage

24(%rbp)

16(%rbp)
feturn

129155/ 8 (ssrbp)

—— srbp

-8(%rbp)

%[%

-16(%rbp)

23]

focal
“top" of arl24]
stack

%rsp. 101 |-40(%rbp)

Collateral damage

) Stop the program from crashing early
£) ‘Overwrite’ with same value, or another legal one
£) Minimize time between overwrite and use

Other code injection targets

£) Function pointers
® Local, global, on heap

©) longjmp buffers
£) GOT (PLT) / import tables
£) Exception handlers

Indirect overwrites

©) Change a data pointer used to access a code
pointer
) Easiest if there are few other uses

£) Common examples

® Frame pointer
® C+ object vtable pointer

Non-sequential writes

©) Eg. missing bounds check, corrupted pointer

£) Can be more flexible and targeted
® Eg, a write-what-where primitve

£) More likely needs an absolute location
£) May have less control of value written

Unexpected-size writes

£) Attacks don't need to obey normal conventions
©) Overwrite one byte within a pointer
©) Use mis-aligned word writes to isolate a byte

Outline

Announcements intermission

Project meeting scheduling

) For pre-proposal due Wednesday night:

£) Will pick a half-hour meeting slot, use for three
different meetings

o) List of about 70 slots on the web page

£) Choose ordered list in pre-proposal, length inverse
to popularity

Readings reminders

©) For last Wed.: buffer overflows and defenses

©) For today: Attack techniques (under ASLR)

£) Coming up: academic (ACM) papers, campus/proxy
downloads

Outline

Shellcode techniques

Basic definition

£) Shellcode: attacker supplied instructions
implementing malicious functionality

£) Name comes from example of starting a shell

£) Often requires attention to machine-language
encoding

Classic execve /bin/sh

©) execve (fname, argv, envp) System call
) Specialized syscall calling conventions

£) Omit unneeded arguments

©) Doable in under 25 bytes for Linux/x86

Avoiding zero bytes

£) Common requirement for shellcode in C string
©) Analogy: broken O key on keyboard
£) May occur in other parts of encoding as well

More restrictions

©) No newlines

©) Only printable characters

£) Only alphanumeric characters
©) “English Shellcode” (CCS'09)

Transformations

£) Fold case, escapes, Latinl to Unicode, etc.

£ Invariant: unchanged by transformation

£) Pre-image: becomes shellcode only after
transformation

Multi-stage approach

o) Initially executable portion unpacks rest from
another format

©) Improves efficiency in restricted environments

©) But self-modifying code has pitfalls

NOP sleds

£) Goal: make the shellcode an easier target to hit

£) Long sequence of no-op instructions, real shellcode

at the end
® x86: 0x90 0x90 0x90 0x90 0x90 ...shellcode

Where to put shellcode?

o) In overflowed buffer, if big enough

£) Anywhere else you can get it
® Nice to have: predictable location

) Convenient choice of Unix local exploits:

Where to put shellcode?

Environment variables

OX7FfFfFffffff
USER=smcc[\gPATH=/bin: /usr/bin[io] Environment/
DISPLAY=: g AUXV strings
o Tebyes] | |argv strings
6\ 4 1171792 15:[1] 0: 0] |auxv
LNl environment
HOOEmN argv
™ envp

future|growth

Code reuse

o) If can't get your own shellcode, use existing code

) Classic example: system implementation in C library
® "Return to libc” attack

£) More variations on this later

Outline

Exploiting other vulnerabilities

Non-control data overwrite

©) Overwrite other security-sensitive data
©) No change to program control flow
©) Set user ID to O, set permissions to all, etc.

Heap meta-data

£) Boundary tags similar to doubly-linked list
£) Overwritten on heap overflow

©) Arbitrary write triggered on free

£) Simple version stopped by sanity checks

Heap meta-data

future|growth
the
"break"”

area

|
]| Unallocated
|
|

Medium objects
i Il _fee || W/ boundary tags
T

]| Small objects
1| bucketed by size

Use after free

£) Write to new object overwrites old, or vice-versa
£) Key issue is what heap object is reused for
©) Influence by controlling other heap operations

Integer overflows

©) Easiest to use: overflow in small (8-, 16-bit) value, or
only overflowed value used
£) 2GB write in 100 byte buffer
® Find some other way to make it stop
©) Arbitrary single overwrite
® Use math to figure out overflowing value

Null pointer dereference

£) Add offset to make a predictable pointer
® On Windows, interesting address start low
£) Allocate data on the zero page

® Most common in user-space to kernel attacks
® Read more dangerous than a write

Format string attack

£) Attacker-controlled format: little interpreter

©) Step one: add extra integer specifiers, dump stack
® Already useful for information disclosure

Format string attack layout

caller frame

printf frame

copy of
Yorcx

copy of
Yordx argument

pointer
copy of

%rsi

coopy f)f/’%x %X %X %X %X
%rdi

Format string attack layout

caller frame

printf frame

copy of
%rex
copy of
Y%rdx \argument
pointer
copy of

%rsi

copy .Of %X %X %X %X %X
Y%rdi

Format string attack: overwrite

£) %n specifier: store number of chars written so far to
pointer arg

£) Advance format arg pointer to other
attacker-controlled data

£) Control number of chars written with padding

£) On x86, use unaligned stores to create pointer

Next time

r) Defenses and counter-attacks

