CSci 5271
Introduction to Computer Security
Day 3: Low-level vulnerabilities

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Preview question

In a 64-bit Linux/x86 program, which of these objects
would have the lowest address (numerically least when
considered as unsigned)?

A. An environment variable

B. The program name in argv [0]

C. A command-line argument in argv[1]

D. A local f1loat variable in a function called by main
E. A local char array in main

Notice: lecture recording

©) I'm experimenting with recording today’s lecture with
my laptop
©) Not turning this into an online course

o) If | do this reqularly, recordings will be available for
review after 7 days

£ I'l try to remember to restate questions

Outline

Vulnerabilities in OS interaction, contd

Bad/missing error handling

©) Under what circumstances could each system call
fail?

©) Careful about rolling back after an error in the middle
of a complex operation

©) Fail to drop privileges = run untrusted code anyway

©) Update file when disk full = truncate

Race conditions

£) Two actions in parallel; result depends on which
happens first

£) Usually attacker racing with you
1. Write secret data to file

2. Restrict read permissions on file
£) Many other examples

Classic races: files in /tmp

£) Temp filenames must already be unique
©) But “unguessable” is a stronger requirement

£) Unsafe design (mktemp (3)): function to return
unused name

©) Must use 0 _EXCL for real atomicity

TOCTTOU gaps

£) Time-of-check (to) time-of-use races

1. Check it's OK to write to file
2. Write to file

£) Attacker changes the file between steps 1and 2
£) Just get lucky, or use tricks to slow you down

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1;
struct stat s;
stat (path, &s)
if (!S_ISREG(s.st_mode))
error("only regular files allowed");
else fd = open(path, O_RDONLY);
return fd;

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1, res;
struct stat s;
res = stat(path, &s)
if (res || !S_ISREG(s.st mode))
error("only regular files allowed");
else fd = open(path, 0_RDONLY);
return fd;

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1, res;
struct stat s;
res = stat(path, &s)
if (res || !'S_ISREG(s.st_mode))
error("only regular files allowed");
else fd = open(path, O0_RDONLY);
return fd;

Changing file references

£) With symbolic links
£ With hard links
£) With changing parent directories

Directory traversal with . .

©) Program argument specifies file, found in directory
files

©) What about files/../../../../etc/passwd?

Environment variables

£) Can influence behavior in unexpected ways

® PATH

® LD_LIBRARY_PATH
® IFS

8.

£) Also umask, resource limits, current directory

IFS and why it's a problem

©) In Unix, splitting a command line into words is the
shell's job
® String — argv array
®grep a b cVs. grep ’a b’ ¢
) Choice of separator characters (default space, tab,
newline) is configurable

©) Exploit system("/bin/uname")

Outline

Low-level view of memory

Note on x86-32 and x86-64

£) 32-bit and 64-bit x86 have many similarities, but
some differences
£) 64-bit now more common for big systems
® 32-bit architectures still common in embedded systems,
eg. 32-bit ARM
£) We're going to have a mix of 32-bit and 64-bit

® In part because original papers often used 32-bit
® We'll mention when some security details are different

Overall layout (Linux 64-bit)

OxFFFFFFFFFFFFFFFF
Kernel
use only
— 0x8
Mk

0x40000000

Detail: static code and data

g,_ow{up
Mainlheap
o rw-
.bss (zero initialized)
.data (initialized)
on disk: .rodata (constants) r-x
-text (code)
0x400000

Usually unused

usitiheap
Static code + data
0x400000
Usually unused
Detail: heap
future|growth
the
"break"
I Unallocated

|
|

‘)| area
|

Medium objects
I] [_free]| W/ boundary tags

]| Small objects
]| bucketed by size

Detail: initial stack
Ox7fffffffffff

Environment/
AUXV strings

tes] | [argv strings
b:\ 4098 / 1171792 15:[1] 0: 6]|auxv
UL ULL environment

HMMARuT argv
H envp

future|growth

Example stack frame

24(%rbp)

16(%rbp)

BISESE] 8 (ssrbp)

—— srbp

-8(%rbp)

19 | _16(%rbp)

ocal
“top" of Ichar(24]]
stack

%rsp. 101 |-40(%rbp)

Outline

Logistics announcements

Reminder about Piazza

£) There has been a lot of activity on the Search For
Teammates thread

£) Also the place for Q&A and to see announcements
first

Outline Stack frame overflow

L I2a(srbp)
16(%rbp)

n
% 8(%rbp)

. Je—— s%rbp.
Basic memory-safety problems

X | -8(%rbp)

c
o9 |16 (%rbp)

“top" of ar(24)
stack

%rsp. 101 |-40(%rbp)

Overwriting adjacent objects Overwriting metadata

©) Forward or backward on stack

£ On stack:
® Other local variables, arguments ® Return address
©) Fields within a structure ® Saved registers, incl. frame pointer
) Global variables © On heap:
) Other heap objects ® Size and location of adjacent blocks
Double free Use after free

£) Passing the same pointer value to free more than
once

£) More dangerous the more other heap operations
occur in between

£) AKA use of a dangling pointer
£) Could overwrite heap metadata
£) Or, access data with confused type

Outline Library funcs: unusable

£) gets writes unlimited data into supplied buffer
£) No way to use safely (unless stdin trusted)

) Finally removed in Cli standard
Where overflows come from

Library funcs: dangerous

©) Big three unchecked string functions

® strcpy(dest, src)
® strcat(dest, src)
® sprintf (buf, fmt, ...)

©) Must know lengths in advance to use safely
(complicated for sprintf)
©) Similar pattern in other funcs returning a string

Library funcs: bounded

£ Just add "n":

® strncpy(dest, src, n)

® strncat(dest, src, n)

® snprintf (buf, size, fmt, ...)
©) Tricky points:

® Buffer size vs. max characters to write

® Failing to terminate

® strocpy zero-fill

More library attempts

©) OpenBSD strlcpy, strlcat

® Easier to use safely than “n” versions
® Non-standard, but widely copied

©) Microsoft-pushed strcpy s, etc.

® Now standardized in Cli, but not in glibc
® Runtime checks that abort

£) Compute size and use memcpy
£) C+ std: : string, glib, etc.

Still a problem: truncation

£) Unexpectedly dropping characters from the end of
strings may still be a vulnerability

©) Eq, if attacker pads paths with /////// or
/./.7./.

©) Avoiding length limits is best, if implemented
correctly

Off-by-one bugs

©) strlen does not include the terminator
£) Comparison with < vs. <=
o) Length vs. last index

£) x++ VS, ++x

Even more buffer/size mistakes

£) Inconsistent code changes (use sizeof)

£) Misuse of sizeof (eg., on pointer)

£) Bytes vs. wide chars (UCS-2) vs. multibyte chars
(UTF-8)

£) OS length limits (or lack thereof)

Other array problems

©) Missing/wrong bounds check

® One unsigned comparison suffices
® Two signed comparisons needed

©) Beware of clever loops
® Premature optimization

Outline

More problems

Integer overflow

) Fixed size result = math result

©) Sum of two positive ints negative or less than
addend

£) Also multiplication, left shift, etc.
©) Negation of most-negative value
© (low + high)/2

Integer overflow example

int n = read_int();
obj *p = malloc(n * sizeof(obj));
for (i = 0; i < m; i++)

plil = read_obj();

Signed and unsigned

©) Unsigned gives more range for, eg, size t

©) At machine level, many but not all operations are the
same

£) Most important difference: ordering
o) In C, signed overflow is undefined behavior

Mixing integer sizes

£) Complicated rules for implicit conversions
® Also includes signed vs. unsigned

£) Generally, convert before operation:
mEg, 1ULL << 63

£) Sign-extend vs. zero-extend
® char ¢ = Oxff; (int)c

Null pointers

©) Vanilla null dereference is usually non-exploitable
(just a DoS)

£) But not if there could be an offset (e.g, field of struct)

©) And not in the kernel if an untrusted user has
allocated the zero page

Undefined behavior

©) C standard "undefined behavior”: anything could
happen

£) Can be unexpectedly bad for security

£) Most common problem: compiler optimizes
assuming undefined behavior cannot happen

Linux kernel example

struct sock *sk = tun—->sk;
/] ...
if (!tun)
return POLLERR;
// more uses of tun and sk

Format strings

© printf format strings are a little interpreter

€ printf (fmt) with untrusted fmt lets the attacker
program it
©) Allows:

® Dumping stack contents
® Denial of service
® Arbitrary memory modifications!

Next time

©) Exploitation techniques for these vulnerabilities

