
CSci 5271
Introduction to Computer Security
Day 3: Low-level vulnerabilities

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Preview question

In a 64-bit Linux/x86 program, which of these objects
would have the lowest address (numerically least when
considered as unsigned)?

A. An environment variable

B. The program name in argv[0]

C. A command-line argument in argv[1]

D. A local float variable in a function called by main

E. A local char array in main

Notice: lecture recording

I’m experimenting with recording today’s lecture with
my laptop

Not turning this into an online course

If I do this regularly, recordings will be available for
review after 7 days

I’ll try to remember to restate questions

Outline

Vulnerabilities in OS interaction, cont’d

Low-level view of memory

Logistics announcements

Basic memory-safety problems

Where overflows come from

More problems

Bad/missing error handling

Under what circumstances could each system call
fail?

Careful about rolling back after an error in the middle
of a complex operation

Fail to drop privileges) run untrusted code anyway

Update file when disk full) truncate

Race conditions

Two actions in parallel; result depends on which
happens first

Usually attacker racing with you

1. Write secret data to file

2. Restrict read permissions on file

Many other examples

Classic races: files in /tmp

Temp filenames must already be unique

But “unguessable” is a stronger requirement

Unsafe design (mktemp(3)): function to return
unused name

Must use O EXCL for real atomicity

TOCTTOU gaps

Time-of-check (to) time-of-use races
1. Check it’s OK to write to file
2. Write to file

Attacker changes the file between steps 1 and 2

Just get lucky, or use tricks to slow you down

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1;

struct stat s;

stat(path, &s)

if (!S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1, res;

struct stat s;

res = stat(path, &s)

if (res || !S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1, res;

struct stat s;

res = stat(path, &s)

if (res || !S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

Changing file references

With symbolic links

With hard links

With changing parent directories

Directory traversal with ..

Program argument specifies file, found in directory
files

What about files/../../../../etc/passwd?

Environment variables

Can influence behavior in unexpected ways
PATH

LD LIBRARY PATH

IFS

. . .

Also umask, resource limits, current directory

IFS and why it’s a problem

In Unix, splitting a command line into words is the
shell’s job

String ! argv array
grep a b c vs. grep 'a b' c

Choice of separator characters (default space, tab,
newline) is configurable

Exploit system("/bin/uname")

Outline

Vulnerabilities in OS interaction, cont’d

Low-level view of memory

Logistics announcements

Basic memory-safety problems

Where overflows come from

More problems

Note on x86-32 and x86-64

32-bit and 64-bit x86 have many similarities, but
some differences
64-bit now more common for big systems

32-bit architectures still common in embedded systems,
e.g. 32-bit ARM

We’re going to have a mix of 32-bit and 64-bit
In part because original papers often used 32-bit
We’ll mention when some security details are different

Overall layout (Linux 64-bit)

Detail: static code and data Detail: heap

Detail: initial stack Example stack frame

Outline

Vulnerabilities in OS interaction, cont’d

Low-level view of memory

Logistics announcements

Basic memory-safety problems

Where overflows come from

More problems

Reminder about Piazza

There has been a lot of activity on the Search For
Teammates thread

Also the place for Q&A and to see announcements
first

Outline

Vulnerabilities in OS interaction, cont’d

Low-level view of memory

Logistics announcements

Basic memory-safety problems

Where overflows come from

More problems

Stack frame overflow

Overwriting adjacent objects

Forward or backward on stack
Other local variables, arguments

Fields within a structure

Global variables

Other heap objects

Overwriting metadata

On stack:
Return address
Saved registers, incl. frame pointer

On heap:
Size and location of adjacent blocks

Double free

Passing the same pointer value to free more than
once

More dangerous the more other heap operations
occur in between

Use after free

AKA use of a dangling pointer

Could overwrite heap metadata

Or, access data with confused type

Outline

Vulnerabilities in OS interaction, cont’d

Low-level view of memory

Logistics announcements

Basic memory-safety problems

Where overflows come from

More problems

Library funcs: unusable

gets writes unlimited data into supplied buffer

No way to use safely (unless stdin trusted)

Finally removed in C11 standard

Library funcs: dangerous

Big three unchecked string functions
strcpy(dest, src)

strcat(dest, src)

sprintf(buf, fmt, ...)

Must know lengths in advance to use safely
(complicated for sprintf)

Similar pattern in other funcs returning a string

Library funcs: bounded

Just add “n”:
strncpy(dest, src, n)

strncat(dest, src, n)

snprintf(buf, size, fmt, ...)

Tricky points:
Buffer size vs. max characters to write
Failing to terminate
strncpy zero-fill

More library attempts

OpenBSD strlcpy, strlcat
Easier to use safely than “n” versions
Non-standard, but widely copied

Microsoft-pushed strcpy s, etc.
Now standardized in C11, but not in glibc
Runtime checks that abort

Compute size and use memcpy

C++ std::string, glib, etc.

Still a problem: truncation

Unexpectedly dropping characters from the end of
strings may still be a vulnerability

E.g., if attacker pads paths with /////// or
/./././.

Avoiding length limits is best, if implemented
correctly

Off-by-one bugs

strlen does not include the terminator

Comparison with < vs. <=

Length vs. last index

x++ vs. ++x

Even more buffer/size mistakes

Inconsistent code changes (use sizeof)

Misuse of sizeof (e.g., on pointer)

Bytes vs. wide chars (UCS-2) vs. multibyte chars
(UTF-8)

OS length limits (or lack thereof)

Other array problems

Missing/wrong bounds check
One unsigned comparison suffices
Two signed comparisons needed

Beware of clever loops
Premature optimization

Outline

Vulnerabilities in OS interaction, cont’d

Low-level view of memory

Logistics announcements

Basic memory-safety problems

Where overflows come from

More problems

Integer overflow

Fixed size result 6= math result

Sum of two positive ints negative or less than
addend

Also multiplication, left shift, etc.

Negation of most-negative value

(low + high)/2

Integer overflow example

int n = read_int();

obj *p = malloc(n * sizeof(obj));

for (i = 0; i < n; i++)

p[i] = read_obj();

Signed and unsigned

Unsigned gives more range for, e.g., size t

At machine level, many but not all operations are the
same

Most important difference: ordering

In C, signed overflow is undefined behavior

Mixing integer sizes

Complicated rules for implicit conversions
Also includes signed vs. unsigned

Generally, convert before operation:
E.g., 1ULL << 63

Sign-extend vs. zero-extend
char c = 0xff; (int)c

Null pointers

Vanilla null dereference is usually non-exploitable
(just a DoS)

But not if there could be an offset (e.g., field of struct)

And not in the kernel if an untrusted user has
allocated the zero page

Undefined behavior

C standard “undefined behavior”: anything could
happen

Can be unexpectedly bad for security

Most common problem: compiler optimizes
assuming undefined behavior cannot happen

Linux kernel example

struct sock *sk = tun->sk;

// ...

if (!tun)

return POLLERR;

// more uses of tun and sk

Format strings

printf format strings are a little interpreter

printf(fmt) with untrusted fmt lets the attacker
program it
Allows:

Dumping stack contents
Denial of service
Arbitrary memory modifications!

Next time

Exploitation techniques for these vulnerabilities

