CSci 5271
Introduction to Computer Security
Day 2: Intro to Software and OS Security

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Security risk and management

Security as an economic good

£) Security is a good thing (for defenders)

©) But, must trade off other things to get it
©) Rational to not purchase all available

©) In the big picture, always a compromise

Risk budgeting with ALE

) Annual loss expected = (loss amount) x (incidence)

) Net risk reduction = AALE - (security cost)

£) Like with a budget, spreadsheet may not match
reality

©) Like other cost-benefit analysis, can make trade-offs
more explicit

Failure: Displacement activity

Security “syllogism” (managers, politicians):
1. We must do something
2. This is something

3. Therefore we must do this.

©) Example: airport security
©) Example: external vs. internal threats

Pitfall: Risk compensation

£) Some benefits of security are taken back by riskier
behavior

©) Example: H-Day in Sweden

) We'll return to human factors later

This class’s perspective

) We'll mostly ignore management issues
©) For this class, maximize security at all costs

Outline

Some terminology

“Trusted”

©) In security, “trusted” is a bad word

©) X is trusted: X can break your security
©) "Untrusted” = okay if it's evil

£) Trusted Computing Base (TCB): minimize

"Trusted” vs. “trustworthy”

£) Something you actually should trust is “trustworthy

£) Concise definition of security failure: something
trusted is not trustworthy

"

“Privilege”

) Privilege is the power to take security-relevant
actions

£) Concise definition of security failure: the adversary
gets privilege they shouldn't

3 common privilege levels

1. Administrator/root/OS kernel
2. Regular user of system
3. Evil people on the Internet

3 common privilege levels

1. Administrator/root/OS kernel
1 Local exploit

2. Reqular user of system
1> Remote exploit

3. Evil people on the Internet

Outline

Logistics intermission

Posting slides before lecture

o) Il try for 1:59pm on the night before, not guaranteed

©) Announcements are most likely to change, recheck
after

Piazza site now live

©) Linked from public and Canvas pages

£ Includes a sub-thread specifically designed for
searching for teammates

® General suggestions: try multiple avenues, think about
what you're looking for and can offer

Finding project topics

) Pre-proposal due 9/18 (one week from Wednesday)
©) Don't skimp on topic: hard but important
) Conference papers linked from class site

More on choosing topics

£) Can't: wait to see what part of class you like best
® But feel free to look ahead

£) Think about your group’s skills
® Also: available hardware/software

£) Think about where to find novelty

£) Topic changes allowed, but will set you back

Outline

Example security failures

Classic buffer overflow

char buf[20];
gets (buf) ;

©) Vulnerability in finger daemon

£) Morris worm brought down 1988 Internet (4.3BSD
VAXes)

Buffer overflow classification

£) Bug: stack buffer overflow
©) Attack: return address overwrite
©) Consequence: (binary) code injection

Read It Twice (WOOT12)

£) Smart TV (running Linux) only accepts signed apps
on USB sticks

1. Check signature on file

2. Install file

£) Malicious USB device replaces app between steps
) TV “rooted”/"jailbroken”

Confused deputy compiler

) Compiler writes to billing database

) Compiler can produce debug output to
user-specified file

©) Specify debug output to billing file, disrupt billing

©) How to write policy preventing this?

Leaky intelligence analysts

£)1000s of analysts need to view 1000s of classified
documents to do their job

£) Can we prevent it if one wants to send them to the
Washington Post?

£) More than regular access control
£) (Reality: many non-technical problems too)

Outline

Software security engineering

Vulnerabilities are bugs

£) Security bugs “just a special case” of bugs

©) Like regular bugs, only obscure ones make it
through testing

©) Key difference:

® Rare regular bug has limited impact
® Attackers seek out vulnerable circumstances

Security and quality

©) Security correlated with other software quality:
® Developers understand code well
® Interactions between modules controlled
® Well tested

Security and other features

£) Security would be much easier if systems were less
complex

£) But, very few users want that trade-off

£) Risk compensation with improvements to
development process

Contracts and checks

£) Requirement: check X before doing Y
£) What function’s responsibility is the check?

©) Answer embodied in contracts, aka specifications,
preconditions and postconditions

Defensive programming

£) Analogy: defensive driving

£) Don't assume things are right, check

£) Inbound: preconditions on arguments

£) Outbound: error conditions

£) Within reason: some things can't be checked at
some places

Outline

Vulnerabilities in OS interaction

Shell code injection

©) Don't pass untrusted strings to a command shell
€ In C: system, popen

€) system("cmd $argl $arg2")

€ Fix 1. avoid shell

£) Fix 2: sanitize data (preferably allow-list)

Shell code injection example

©) Benign: system("cp $argl $arg2"), argl =
"filel.txt"

£) Attack: argl = "a b; echo Gotcha"

©) Command: "cp a b; echo Gotcha file2.txt"

©) Not a complete solution: deny-list *;’

Bad/missing error handling

£) Under what circumstances could each system call
fail?

£) Careful about rolling back after an error in the middle
of a complex operation

£ Fail to drop privileges = run untrusted code anyway

£) Update file when disk full = truncate

Race conditions

©) Two actions in parallel; result depends on which
happens first

©) Usually attacker racing with you

1. Write secret data to file

2. Restrict read permissions on file

£) Many other examples

Classic races: files in /tmp

£) Temp filenames must already be unique
£) But "unguessable” is a stronger requirement

£) Unsafe design (mktemp (3)): function to return
unused name

£) Must use 0_EXCL for real atomicity

TOCTTOU gaps

©) Time-of-check (to) time-of-use races

1. Check it's OK to write to file
2. Write to file

) Attacker changes the file between steps 1and 2
©) Just get lucky, or use tricks to slow you down

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1;
struct stat s;
stat(path, &s)
if (!S_ISREG(s.st_mode))
error("only regular files allowed");
else fd = open(path, 0_-RDONLY);
return fd;

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1, res;
struct stat s;
res = stat(path, &s)
if (res || !S_ISREG(s.st mode))
error("only regular files allowed");
else fd = open(path, O_RDONLY);
return fd;

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1, res;
struct stat s;
res = stat(path, &s)
if (res || !'S_ISREG(s.st mode))
error("only regular files allowed");
else fd = open(path, 0_RDONLY);
return fd;

Changing file references

£) With symbolic links
£) With hard links
©) With changing parent directories

Directory traversal with . .

£) Program argument specifies file, found in directory
files

©) What about files/../../../../etc/passud?

Environment variables

£) Can influence behavior in unexpected ways

® PATH

® LD_LIBRARY PATH
® IFS

9.

©) Also umask, resource limits, current directory

IFS and why it's a problem

£ In Unix, splitting a command line into words is the
shell’'s job
® String — argv array
®grep a b cVs. grep ’a b’ ¢
£) Choice of separator characters (default space, tab,
newline) is configurable

©) Exploit system("/bin/uname")

Next time

©) Bugs particular to low-level (e.g., C) programs

