
CSci 5271
Introduction to Computer Security
Day 1: Introduction and Logistics

Stephen McCamant (he/him)

University of Minnesota, Computer Science & Engineering

Outline

Big-Picture Introduction

Course Logistics

What is computer security?

Keep “bad things” from happening

Distinguished by presence of an adversary

Two sides of security

Defenders / white-hats / good guys[sic]

Attackers / black-hats / bad guys[sic]

Each side’s strategy depends on the other

In some ways like a game

Classic security goals

Confidentiality

Integrity

Authenticity

Availability

Managing risk

Threat model, likely adversary goals

Expected damage

Expected attack rate

Course areas

Software security

OS security

Cryptography

Network application security

Other topics

Software security

Security bugs aka vulnerabilities
Some specific to low-level languages like C, others not

Arms race
Attack techniques
Defenses against unknown bugs
Countermeasures against defenses

Defensive programming and design



OS security

Classic area for secure design and security policies
Some specific examples from Unix/Linux

Access control and capabilities

Multi-level security and information flow

Assurance and trust

Cryptography

Mathematical techniques for protecting information

Symmetric-key techniques (e.g. AES)

Public-key techniques (e.g. RSA)

Cryptographic protocols

What can go wrong (lots!)

Security and the network

Network protocols, basic and “S”

Firewalls, NATs, intrusion detectors

Web servers and web clients

Network malware and network DoS

Short topics

Electronic voting

Privacy-enhancing network overlays

Threats from LLMs

Security and usability

Learning goals

Think like your adversary

Recognize and eliminate vulnerabilities

Design and build systems securely

Apply security principles to research problems

Outline

Big-Picture Introduction

Course Logistics

Instructor information

Stephen McCamant

Office: 4-225E Keller

Office hours: Mondays 4-5pm, or by appointment

Email: mccamant@cs.umn.edu

Teaching assistants

Kefu Wu

Andrew Guerra

Office hours TBA



Prerequisites

Undergraduate-level OS, e.g. 4061

Machine code and compilation
E.g. 2021, transitive for 4061

Useful: networks (4211)

Graduate level maturity and resourcefulness

C, Unix, (Perl j Python j Ruby j � � �)

Reading materials

Posted on the course web site

Download, perhaps with library proxy

Read before corresponding lecture

Readings and lecture may not match
Both may appear on exams

Textbook

(or )

Evaluation components

10% Written exercise sets (4)

15% Hands-on assignments (2)

20% Midterm exam

25% Final exam

30% Group research project

Exercises

Four sets, roughly by topic areas

Do individually or in groups of up to 3

Mostly thinking and writing, not much programming

Submit one set per group in PDF, via
Canvas/Gradescope

Hands-on assignments

Two assignments, by large topic divisions

Do individually or in groups of up to 3

Mostly programming and attacking

Draws heavily on your C and Unix skills

First up: penetrate-and-patch HA1

Exams

Open book, open notes, no
laptops/calculators/phones

Mix of multiple-choice/true-false and short-answer

Midterm: Wednesday October 23rd in class

Final: Saturday December 14th 10:30am-12:30pm

Mark your calendars!

Group research project

Single most important and time-consuming part of
course

Groups of 4-6, preferably 5 or 6

Engage with a recent research paper
Reproduce and extend, or
Reproduce and attack



Project milestones

Pre-proposal (due Sep. 18)

Progress meetings and reports (monthly)

Short in-class presentation (last two weeks)

Paper-style final report (due Dec. 11)

Pre-proposal (Sep. 18)

Who: group members

What: paper you’re engaging with

Why: are you suited for this project

How: preliminary action plan

When: available times for progress meetings

Project evaluation

15% Originality

15% Scholarship

30% Strength of evaluation

40% Individual contribution

Late assignments

Due dates usually 11:59:00pm Central Time

1 sec late - 23:59:59 late: 75%

24 hrs - 47:59:59 late: 50%

48 hrs - 71:59:59 late: 25%

After that: 0

Collaboration, within groups

Main kind of collaboration expected in class

Think about how you structure your collaboration

For best results, but also to learn from teammates

Collaboration, between groups

Be careful: “no spoilers”

OK to discuss general concepts

OK to help with side tech issues

Sharing code or written answers is never OK

External sources

Many assignments will allow or recommend outside
(library, Internet) sources

But you must appropriately acknowledge any outside
sources you use

Failure to do so is plagiarism

What about AI?
General principle: what if you got similar help from a
person outside the class?

Always okay to use for concept understanding, or
non-graded activities

Avoid substituting for your own understanding or
effort in graded assignments

Bad for your learning
Also not allowed, unless the assignment says otherwise

Also beware the AI’s answers might not be right!



AI usage for first two assignments

As an experiment, there will be a liberal policy for AI
usage on the first two assignments

Exercise set 1 and hands-on assignment 1

You can use an AI system as long as you credit it in
the same way as your human group members
It may not be in your interest to do this

I don’t expect AIs can do the tricky parts of HA1
The design goal of exercise sets is that an AI could at
most get a B or a C.

Security ethics

Don’t use techniques discussed in class to attack
the security of other people’s computers!

If we find you do, you will fail, along with other
applicable penalties

Academic misconduct generally

Don’t cheat, plagiarize, help others cheat, etc.

Minimum penalty: 0 on assignment, report to OCS

More serious: F in course, other OCS penalties

Course web site

Department web site under csci5271

Also linked from my home page ~mccamant

These slides will be posted after class

Canvas

Assignment submissions (maybe Gradescope)

Gradebook viewing

Mostly Piazza

Online Q&A
Can be anonymous and/or private
Both students and staff can answer

Course announcements
Can control delivery preferences, defaults to email

Reserve email for personal, administrative issues

Challenging course aspects

Stressing C, low-level, and Unix skills

Thinking like an attacker

Thinking like a researcher

Time management

4271 vs. 5271

Designed so you can take either or both
5271 easier but still worthwhile after 4271

4271 has more of: threat modeling, software
engineering, writing support

5271 has more of: research perspectives,
novel/difficult attacks



Hands-on Assignment 1

Weekly attacks 9/20-10/18

Attack a badly coded extensible text editor
(BCEMACS)

Test your attacks using Linux virtual machines

Exploiting BCEMACS

BCEMACS can run as super-user (“root”)

Bugs allow a regular user to gain root privileges
(shell)

Challenge: many steps from bug to working exploit

Challenge: bugs fixed over time

Detailed material starts next week

Readings, projects, exercise set

See you on Monday!


