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Abstract
Buffer overflows have been the most common

form of security vulnerability for the last ten
years. More over, buffer overflow vulnerabilities
dominate the area of remote network penetra-
tion vulnerabilities, where an anonymous Inter-
net user seeks to gain partial or total control of
a host. If buffer overflow vulnerabilities could
be effectively eliminated, a very large portion of
the most serious security threats would also be
eliminated. In this paper, we survey the various
types of buffer overflow vulnerabilities and
attacks, and survey the various defensive mea-
sures that mitigate buffer overflow vulnerabili-
ties, including our own StackGuard method. We
then consider which combinations of techniques
can eliminate the problem of buffer overflow
vulnerabilities, while preserving the functional-
ity and performance of existing systems.

1 Introduction
Buffer overflows have been the most common form

of security vulnerability in the last ten years. More
over, buffer overflow vulnerabilities dominate in the
area of remote network penetration vulnerabilities,
where an anonymous Internet user seeks to gain partial
or total control of a host. Because these kinds of attacks
enable anyone to take total control of a host, they repre-
sent one of the most serious classes security threats.

Buffer overflow attacks form a substantial portion
of all security attacks simply because buffer overflow
vulnerabilities are so common [15] and so easy to
exploit [30, 28, 35, 20]. However, buffer overflow vul-
nerabilities particularly dominate in the class of remote
penetration attacks because a buffer overflow vulnera-

bility presents the attacker with exactly what they need:
the ability to inject and execute attack code. The
injected attack code runs with the privileges of the vul-
nerable program, and allows the attacker to bootstrap
whatever other functionality is needed to control
(“own” in the underground vernacular) the host com-
puter.

For instance, among the five “new” “remote to
local” attacks used in the 1998 Lincoln Labs intrusion
detection evaluation, three were essentially social engi-
neering attacks that snooped user credentials, and two
were buffer overflows. 9 of 13 CERT advisories from
1998 involved buffer overflows [34] and at least half of
1999 CERT advisories involve buffer overflows [5]. An
informal survey on the Bugtraq security vulnerability
mailing list [29] showed that approximately 2/3 of
respondents felt that buffer overflows are the leading
cause of security vulnerability.1

Buffer overflow vulnerabilities and attacks come in
a variety of forms, which we describe and classify in
Section 2. Defenses against buffer overflow attacks
similarly come in a variety of forms, which we describe
in Section 3, including which kinds of attacks and vul-
nerabilities these defenses are effective against. The
Immunix project has developed the StackGuard defen-
sive mechanism [14, 11], which has been shown to be
highly effective at resisting attacks without compromis-
ing system compatibility or performance [9]. Section 4
discusses which combinations of defenses complement
each other. Section 5 presents our conclusions.

2 Buffer Overflow Vulnerabilities and 
Attacks

The overall goal of a buffer overflow attack is to
subvert the function of a privileged program so that the
attacker can take control of that program, and if the pro-
gram is sufficiently privileged, thence control the host.
Typically the attacker is attacking a root program, and
immediately executes code similar to “exec(sh)” to get
a root shell, but not always. To achieve this goal, the
attacker must achieve two sub-goals:
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1.The remaining 1/3 of respondants identified
“misconfiguration” as the leading cause of security
vulnerability.



—  2 —

1. Arrange for suitable code to be available in the pro-
gram's address space.

2. Get the program to jump to that code, with suitable
parameters loaded into registers & memory.
We categorize buffer overflow attacks is in terms of

achieving these two sub-goals. Section 2.1 describes
how the attack code is placed in the victim program’s
address space (which is where the “buffer” part comes
from). Section 2.2 describes how the attacker overflows
a program buffer to alter adjacent program state (which
is where the “overflow” part comes from) to induce the
victim program to jump to the attack code. Section 2.3
discusses some issues in combining the code injection
techniques from Section 2.1 with the control flow cor-
ruption techniques from Section 2.2.

2.1 Ways to Arrange for Suitable Code to Be in 
the Program's Address Space

There are two ways to arrange for the attack code to
be in the victim program’s address space: either inject
it, or use what is already there.
Inject it: The attacker provides a string as input to the

program, which the program stores in a buffer. The
string contains bytes that are actually native CPU
instructions for the platform being attacked. Here
the attacker is (ab)using the victim program’s buff-
ers to store the attack code. Some nuances on this
method:

• The attacker does not have to overflow any buff-
ers to do this; sufficient payload can be injected
into perfectly reasonable buffers.

• The buffer can be located anywhere:

• on the stack (automatic variables)

• on the heap (malloc’d variables)

• in the static data area (initialized or uninitial-
ized)

It is already there: Often, the code to do what the
attacker wants is already present in the program’s
address space. The attacker need only parameterize
the code, and then cause the program to jump to it.
For instance, if the attack code needs to execute
“exec(“/bin/sh”)”, and there exists code in
libc that executes “exec(arg)” where “arg” is a
string pointer argument, then the attacker need only
change a pointer to point to “/bin/sh” and jump
to the appropriate instructions in the libc library
[41].

2.2 Ways to Cause the Program to Jump to the 
Attacker's Code

All of these methods seek to alter the program’s
control flow so that the program will jump to the attack
code. The basic method is to overflow a buffer that has

weak or non-existent bounds checking on its input with
a goal of corrupting the state of an adjacent part of the
program’s state, e.g. adjacent pointers, etc. By over-
flowing the buffer, the attacker can overwrite the adja-
cent program state with a near-arbitrary2 sequence of
bytes, resulting in an arbitrary bypass of C’s type sys-
tem3 and the victim program’s logic.

The classification here is the kind of program state
that the attacker’s buffer overflow seeks to corrupt. In
principle, the corrupted state can be any kind of state.
For instance, the original Morris Worm [37] used a
buffer overflow against the fingerd program to cor-
rupt the name of a file that fingerd would execute. In
practice, most buffer overflows found in “the wild”
seek to corrupt code pointers: program state that points
at code. The distinguishing factors among buffer over-
flow attacks is the kind of state corrupted, and where in
the memory layout the state is located.
Activation Records: Each time a function is called, it

lays down an activation record on the stack [1] that
includes, among other things, the return address that
the program should jump to when the function exits,
i.e. point at the code injected in Section 2.1. Attacks
that corrupt activation record return addresses over-
flow automatic variables, i.e. buffers local to the
function, as shown in Figure 1. By corrupting the
return address in the activation record, the attacker
causes the program to jump to attack code when the
victim function returns and dereferences the return
address. This form of buffer overflow is called a
“stack smashing attack” [14, 30, 28, 35] and consti-
tute a majority of current buffer overflow attacks 

Function Pointers: “void (* foo)()” declares
the variable foo which is of type “pointer to func-
tion returning void.” Function pointers can be allo-
cated anywhere (stack, heap, static data area) and so
the attacker need only find an overflowable buffer
adjacent to a function pointer in any of these areas
and overflow it to change the function pointer.
Some time later, when the program makes a call
through this function pointer, it will instead jump to
the attacker's desired location. An example of this
kind of attack appeared in an attack against the
superprobe program for Linux.

Longjmp buffers: C includes a simple checkpoint/roll-
back system called setjmp/longjmp. The idiom is to
say “setjmp(buffer)” to checkpoint, and say
“longjmp(buffer)” to go back to the check-
point. However, if the attacker can corrupt the state
of the buffer, then “longjmp(buffer)” will

2.There are some bytes that are hard to inject, such as control
characters and null bytes that have special meaning to I/O
libraries, and thus may be filtered before they reach the
program’s memory.

3.That this is possible is an indication of the weakness of C’s
type system.
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jump to the attacker's code instead. Like function
pointers, longjmp buffers can be allocated any-
where, so the attacker need only find an adjacent
overflowable buffer. An example of this form of
attack appeared against Perl 5.003. The attack first
corrupted a longjmp buffer used to recover when
buffer overflows are detected, and then induces the
recovery mode, causing the Perl interpreter to jump
to the attack code.

2.3 Combining Code Injection and Control 
Flow Corruption Techniques

Here we discuss some issues in combining the
attack code injection (Section 2.1) and control flow cor-
ruption (Section 2.2) techniques.

The simplest and most common form of buffer
overflow attack combines an injection technique with
an activation record corruption in a single string. The
attacker locates an overflowable automatic variable,
feeds the program a large string that simultaneously
overflows the buffer to change the activation record,
and contains the injected attack code. This is the tem-
plate for an attack outlined by Levy [30]. Because the C
idiom of allocating a small local buffer to get user or
parameter input is so common, there are a lot of
instances of code vulnerable to this form of attack.

The injection and the corruption do not have to hap-
pen in one action. The attacker can inject code into one
buffer without overflowing it, and overflow a different
buffer to corrupt a code pointer.  This is typically done
if the overflowable buffer does have bounds checking
on it, but gets it wrong, so the buffer is only overflow-
able up to a certain number of bytes. The attacker does
not have room to place code in the vulnerable buffer, so
the code is simply inserted into a different buffer of suf-
ficient size.

If the attacker is trying to use already-resident code
instead of injecting it, they typically need to parameter-

ize the code. For instance, there are code fragments in
libc (linked to virtually every C program) that do
“exec(something)” where “something” is a
parameter. The attacker then uses buffer overflows to
corrupt the argument, and another buffer overflow to
corrupt a code pointer to point into libc at the appro-
priate code fragment.

3 Buffer Overflow Defenses
There are four basic approaches to defending

against buffer overflow vulnerabilities and attacks. The
brute force method of writing correct code is described
in Section 3.1. The operating systems approach
described in Section 3.2 is to make the storage areas for
buffers non-executable, preventing the attacker from
injecting attack code This approach stops many buffer
overflow attacks, but because attackers do not necessar-
ily need to inject attack code to perpetrate a buffer over-
flow attack (see Section 2.1) this method leaves
substantial vulnerabilities. The direct compiler
approach described in Section 3.3 is to perform array
bounds checks on all array accesses. This method com-
pletely eliminates the buffer overflow problem by mak-
ing overflows impossible, but imposes substantial
costs. The indirect compiler approach described in Sec-
tion 3.4 is to perform integrity checks on code pointers
before dereferencing them. While this technique does
not make buffer overflow attacks impossible, it does
stop most buffer overflow attacks, and the attacks that it
does not stop are difficult to create, and the compatibil-
ity and performance advantages over array bounds
checking are substantial, as described in Section 3.5.

3.1 Writing Correct Code

“To err is human, but to really foul up requires a
computer.” -- Anon. Writing correct code is a laudable
but remarkably expensive proposition [13, 12], espe-
cially when writing in a language such as C that has
error-prone idioms such as null-terminated strings and a
culture that favors performance over correctness.
Despite a long history of understanding of how to write
secure programs [6] vulnerable programs continue to
emerge on a regular basis [15]. Thus some tools and
techniques have evolved to help novice developers
write programs that are somewhat less likely to contain
buffer overflow vulnerabilities.

The simplest method is to grep the source code for
highly vulnerable library calls such as strcpy and
sprintf that do not check the length of their argu-
ments. Versions of the C standard library have also
been developed that complain when a program links to
vulnerable functions like strcpy and sprintf.

Code auditing teams have appeared [16, 2] with an
explicit objective of auditing large volumes of code by
hand, looking for common security vulnerabilities such
as buffer overflows and file system race conditions [7].
However, buffer overflow vulnerabilities can be subtle.
Even defensive code that uses safer alternatives such as
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Figure 1:   Buffer Overflow Attack Against
Activation Record
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strncpy and snprintf can contain buffer overflow
vulnerabilities if the code contains an elementary off-
by-one error. For instance, the lprm program was
found to have a buffer overflow vulnerability [22],
despite having been audited for security problems such
as buffer overflow vulnerabilities.

To combat the problem of subtle residual bugs,
more advanced debugging tools have been developed,
such as fault injection tools [23]. The idea is to inject
deliberate buffer overflow faults at random to search
for vulnerable program components. There are also
static analysis tools emerging [40] that can detect many
buffer overflow vulnerabilities.

While these tools are helpful in developing more
secure programs, C semantics do not permit them to
provide total assurance that all buffer overflows have
been found. Debugging techniques can only minimize
the number of buffer overflow vulnerabilities, and pro-
vide no assurances that all the buffer overflow vulnera-
bilities have been eliminated. Thus for high assurance,
protective measures such those described in sections
3.2 through 3.4 should be employed unless one is very
sure that all potential buffer overflow vulnerabilities
have been eliminated.

3.2 Non-Executable Buffers

The general concept is to make the data segment of
the victim program’s address space non-executable,
making it impossible for attackers to execute the code
they inject into the victim program’s input buffers. This
is actually the way that many older computer systems
were designed, but more recent UNIX and MS Windows
systems have come to depend on the ability to emit
dynamic code into program data segments to support
various performance optimizations. Thus one cannot
make all program data segments non-executable with-
out sacrificing substantial program compatibility.

However, one can make the stack segment non-exe-
cutable and preserve most program compatibility. Ker-
nel patches are available for both Linux and Solaris [18,
19] that make the stack segment of the program's
address space non-executable. Since virtually no legiti-
mate programs have code in the stack segment, this
causes few compatibility problems. There are two
exceptional cases in Linux where executable code must
be placed on the stack:
Signal Delivery: Linux delivers UNIX signals to pro-

cesses by emitting code to deliver the signal onto
the process’s stack and then inducing an interrupt
that jumps to the delivery code on the stack. The
non-executable stack patch addresses this by mak-
ing the stack executable during signal delivery.

GCC Trampolines: There are indications that gcc
places executable code on the stack for “trampo-
lines.” However, in practice disabling trampolines
has never been found to be a problem; that portion
of gcc appears to have fallen into disuse.

The protection offered by non-executable stack seg-
ments is highly effective against attacks that depend on
injecting attack code into automatic variables but pro-
vides no protection against other forms of attack (see
Section 2.1). Attacks exist that bypass this form of
defense [41] by pointing a code pointer at code already
resident in the program. Other attacks could be con-
structed that inject attack code into buffers allocated in
the heap or static data segments.

3.3 Array Bounds Checking

While injecting code is optional for a buffer over-
flow attack, the corruption of control flow is essential.
Thus unlike non-executable buffers, array bounds
checking completely stops buffer overflow vulnerabili-
ties and attacks. If arrays cannot be overflowed at all,
then array overflows cannot be used to corrupt adjacent
program state.

To implement array bounds checking, then all reads
and writes to arrays need to be checked to ensure that
they are within range. The direct approach is to check
all array references, but it is often possible to employ
optimization techniques to eliminate many of these
checks. There are several approaches to implementing
array bounds checking, as exemplified by the following
projects.

3.3.1 Compaq C Compiler. The Compaq C com-
piler for the Alpha CPU (cc on Tru64 UNIX, ccc on
Alpha Linux [8]) supports a limited form of array
bounds checking when the “-check_bounds” option is
used. The bounds checks are limited in the following
ways:
• only explicit array references are checked, i.e.

“a[3]” is checked, while “*(a+3)” is not
• since all C arrays are converted to pointers when

passed as arguments, no bounds checking is per-
formed on accesses made by subroutines

• dangerous library functions (i.e. strcpy()) are not
normally compiled with bounds checking, and
remain dangerous even with bounds checking
enabled
Because it is so common for C programs to use

pointer arithmetic to access arrays, and to pass arrays as
arguments to functions, these limitations are severe.
The bounds checking feature is of limited use for pro-
gram debugging, and no use at all in assuring that a pro-
gram’s buffer overflow vulnerabilities are not
exploitable.

3.3.2 Jones & Kelly: Array Bounds Checking for 
C. Richard Jones and Paul Kelly developed a

gcc patch [26] that does full array bounds checking for
C programs. Compiled programs are compatible with
other gcc modules, because they have not changed the
representation of pointers. Rather, they derive a “base”
pointer from each pointer expression, and check the
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attributes of that pointer to determine whether the
expression is within bounds.

The performance costs are substantial: a pointer-
intensive program (ijk matrix multiply) experienced
30× slowdown, Since slowdown is proportionate to
pointer usage, which is quite common in privileged pro-
grams, this performance penalty is particularly unfortu-
nate.

The compiler did not appear to be mature; complex
programs such as elm failed to execute when compiled
with this compiler. However, an updated version of the
compiler is being maintained [39], and it can compile
and run at least portions of the SSH software encryption
package. Throughput experiments with the updated
compiler and software encryption using SSH showed a
12× slowdown [32] (see Section 3.4.2 for comparison).

3.3.3 Purify: Memory Access Checking. Purify
[24] is a memory usage debugging tool for C programs.
Purify uses “object code insertion” to instrument all
memory accesses. After linking with the Purify linker
and libraries, one gets a standard native executable pro-
gram that checks all of its array references to ensure
that they are legitimate. While Purify-protected pro-
grams run normally without any special environment,
Purify is not actually intended as a production security
tool: Purify protection imposes a 3 to 5 times slow-
down. Purify also was laborious to construct, as evi-
denced by a purchase price of approximately $5000 per
copy.

3.3.4 Type-Safe Languages. All buffer overflow
vulnerabilities result from the lack of type safety in C.
If only type-safe operations can be performed on a
given variable, then it is not possible to use creative
input applied to variable foo to make arbitrary changes
to the variable bar. If new, security-sensitive code is to
be written, it is recommended that the code be written
in a type-safe language such as Java or ML.

Unfortunately, there are millions of lines of code
invested in existing operating systems and security-sen-
sitive applications, and the vast majority of that code is
written in C. This paper is primarily concerned with
methods to protect existing code from buffer overflow
attacks.

However, it is also the case that the Java Virtual
Machine (JVM) is a C program, and one of the ways to
attack a JVM is to apply buffer overflow attacks to the
JVM itself [17, 33]. Because of this, applying buffer
overflow defensive techniques to the systems that
enforce type safety for type-safe languages may yield
beneficial results.

3.4 Code Pointer Integrity Checking

The goal of code pointer integrity checking is subtly
different from bounds checking. Instead of trying to
prevent corruption of code pointers (as described in
Section 2.2) code pointer integrity checking seeks to

detect that a code pointer has been corrupted before it is
dereferenced. Thus while the attacker succeeds in cor-
rupting a code pointer, the corrupted code pointer will
never be used because the corruption is detected before
each use.

Code pointer integrity checking has the disadvan-
tage relative to bounds checking that it does not per-
fectly solve the buffer overflow problem; overflows
that affect program state components other than code
pointers will still succeed (see Table 3 in Section 4 for
details). However, it has substantial advantages in
terms of performance, compatibility with existing code,
and implementation effort, which we detail in Section
3.5.

Code pointer integrity checking has been studied at
three distinct levels of generality. Snarskii developed a
custom implementation of libc for FreeBSD [36] that
introspects the CPU stack to detect buffer overflows,
described in Section 3.4.1. Our own StackGuard project
[14, 9] produced a compiler that automatically gener-
ates code to perform integrity checking on function
activation records, described in Section 3.4.2. Finally,
we are in the process of developing PointGuard, a com-
piler that generalizes the StackGuard-style of integrity
checking to all code pointers, described in Section
3.4.3.

3.4.1 Hand-coded Stack Introspection. Snarskii
developed a custom implementation of libc for
FreeBSD [36] that introspects the CPU stack to detect
buffer overflows. This implementation was hand-coded
in assembler, and only protects the activation records
for the functions within the libc library. Snarskii’s
implementation is effective as far as it goes, and pro-
tects programs that use libc from vulnerabilities
within libc, but does not extend protection to vulnera-
bilities in any other code.

3.4.2 StackGuard: Compiler-generated 
Activation Record Integrity Checking. 

StackGuard is a compiler technique for providing
code pointer integrity checking to the return address in
function activation records [14]. StackGuard is imple-
mented as a small patch to gcc that enhances the code
generator for emitting code to set up and tear down
functions. The enhanced setup code places a “canary”4

word next to the return address on the stack, as shown
in Figure 2. The enhanced function tear down code first
checks to see that the canary word is intact before
jumping to the address pointed to by the return address
word. Thus if an attacker attempts a “stack smashing”
attack as shown in Figure 1, the attack will be detected
before the program ever attempts to dereference the
corrupted activation record.

Critical to the StackGuard “canary” approach is that
the attacker is prevented from forging a canary by

4.A direct descendent of the Welsh miner’s canary.
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embedding the canary word in the overflow string.
StackGuard employs two alternative methods to pre-
vent such a forgery:
Terminator Canary: The terminator canary is com-

prised of the common termination symbols for C
standard string library functions; 0 (null), CR, LF,
and -1 (EOF). The attacker cannot use common C
string libraries and idioms to embed these symbols
in an overflow string, because the copying functions
will terminate when they hit these symbols.

Random Canary: The canary is simply a 32-bit ran-
dom number chosen at the time the program starts.
The random canary is a secret that is easy to keep
and hard to guess, because it is never disclosed to
anyone, and it is chosen anew each time the pro-
gram starts.
StackGuard’s notion of integrity checking the stack

in this way is derived from the Synthetix [31, 38] notion
of using quasi-invariants to assure the correctness of

incremental specializations. A specialization is a delib-
erate change to the program, which is only valid if cer-
tain conditions hold. We call such a condition a quasi-
invariant, because it changes, but only occasionally. To
assure correctness, Synthetix developed a variety of
tools to guard the state of quasi-invariants [10].

The changes imposed by attackers employing buffer
overflow techniques can be viewed as invalid special-
izations. In particular, buffer overflow attacks violate
the quasi-invariant that the return address of an active
function should not change while the function is active.
StackGuard’s integrity checks enforce this quasi-invari-
ant.

Experimental results have shown that StackGuard
provides effective protection against stack smashing
attacks, while preserving virtually all of system com-
patibility and performance. Previously [14] we reported
StackGuard’s penetration resistance when exploits were
applied to various vulnerable programs, reproduced
here in Table 1. Subsequently we built an entire Linux
distribution (Red Hat Linux 5.1) using StackGuard [9].
When attacks were released against vulnerabilities in
XFree86-3.3.2-5 [3] and lsof [43] we tested
them as well, and found that StackGuard had success-
fully detected and rejected these attacks. This penetra-
tion analysis demonstrates that StackGuard is highly
effective in detecting and preventing both current and
future stack smashing attacks.

We have had the StackGuarded version of Red Hat
Linux 5.1 in production on various machines for over
one year. This StackGuarded Linux runs on both
Crispin Cowan’s personal laptop computer, and on our
group’s shared file server. This Linux distribution has
been downloaded from our web site hundreds of times,
and there are 55 people on the StackGuard user’s mail-
ing list. With only a single exception, StackGuard has
functioned identically to the corresponding original
Red Hat Linux 5.1. This demonstrates that StackGuard
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Figure 2:   StackGuard Defense Against Stack
Smashing Attack
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Table 1:  StackGuard Penetration Resistance

Vulnerable Program Result Without StackGuard Result with StackGuard

dip 3.3.7n root shell program halts

elm 2.4 PL25 root shell program halts

Perl 5.003 root shell program halts irregularly

Samba root shell program halts

SuperProbe root shell program halts irregularly

umount 2.5K/libc 5.3.12 root shell program halts

wwwcount v2.3 httpd shell program halts

zgv 2.7 root shell program halts
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protection does not materially affect system compatibil-
ity.

We have done a variety of performance tests to
measure the overhead imposed by StackGuard protec-
tion. Microbenchmarks showed substantial increases in
the cost of a single function call [14]. However, subse-
quent macrobenchmarks on network services (the kinds
of programs that need StackGuard protection) showed
very low aggregate overheads.

Our first macrobenchmark used SSH [42] which
provides strongly authenticated and encrypted replace-
ments for the Berkeley r* commands, i.e. rcp
becomes scp. SSH uses software encryption, and so
performance overheads will show up in lowered band-
width. We measured the bandwidth impact by using scp
to copy a large file via the network loopback interface
as follows:

scp bigsource localhost:bigdest
The results showed that StackGuard presents virtu-

ally no cost to SSH throughput. Averaged over five
runs, the generic scp ran for 14.5 seconds (+/- 0.3),
and achieved an average throughput of 754.9 kB/s (+/-
0). The StackGuard-protected scp ran for 13.8 seconds
(+/- 0.5), and achieved an average throughput of 803.8
kB/s (+/- 48.9).5

Our second macorbenchmark measured perfor-
mance overhead in the Apache web server [4], which is
also clearly a candidate for StackGuard protection. If
Apache can be stack smashed, the attacker can seize
control of the web server, allowing the attacker to read

confidential web content, as well as change or delete
web content without authorization. The web server is
also a performance-critical component, determining the
amount of traffic a given server machine can support.

We measure the cost of StackGuard protection by
measuring Apache’s performance using the WebStone
benchmark [27], with and without StackGuard protec-
tion. The WebStone benchmark measures various
aspects of a web server’s performance, simulating a
load generated from various numbers of clients. The
results with and without StackGuard protection are
shown in Table 2.

As with SSH, performance with and without Stack-
Guard protection is virtually indistinguishable. The
StackGuard-protected web server shows a very slight
advantage for a small number of clients, while the
unprotected version shows a slight advantage for a
large number of clients. In the worst case, the unpro-
tected Apache has a 8% advantage in connections per
second, even though the protected web server has a
slight advantage in average latency on the same test. As
before, we attribute these variances to noise, and con-
clude that StackGuard protection has no significant
impact on web server performance.

3.4.3 PointGuard: Compiler-generated Code 
Pointer Integrity Checking. At the time

StackGuard was built, the “stack smashing” variety
formed a gross preponderance of buffer overflow
attacks. It is conjectured that this resulted from some
“cook book” templates for stack smashing attacks
released in late 1996 [25]. Since that time, most of the
“easy” stack smashing vulnerabilities have been
exploited or otherwise discovered and patched, and the
attackers have moved on to explore the more general
form of buffer overflow attacks as described in Section
2.

PointGuard is a generalization of the StackGuard
approach designed to deal with this phenomena. Point-
Guard generalizes the StackGuard defense to place
“canaries” next to all code pointers (function pointers

5.We do not actually believe that StackGuard enhanced SSH’s
performance. Rather, the test showed considerable variance,
with latency ranging from 13.31 seconds to 14.8 seconds,
and throughput ranging from 748 kB/s to 817 kB/s, on an
otherwise quiescent machine. Since the two averages are
within the range of observed values, we simply conclude that
StackGuard protection did not significantly impact SSH’s
performance.

Table 2: Apache Web Server Performance With and Without StackGuard Protection

StackGuard
Protection

# of
Clients

Connections 
per Second

Average Latency 
in Seconds

Average Throughput 
in MBits/Second

No 2 34.44 0.0578 5.63

No 16 43.53 0.3583 6.46

No 30 47.2 0.6030 6.46

Yes 2 34.92 0.0570 5.53

Yes 16 53.57 0.2949 6.44

Yes 30 50.89 0.5612 6.48
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and longjmp buffers) and to check for the validity of
these canaries when ever a code pointer is dereferenced.
If the canary has been trampled, then the code pointer is
corrupt and the program should issue an intrusion alert
and exit, as it does under StackGuard protection. There
are two issues involved in providing code pointers with
canary protection:
Allocating the Canary: Space for the canary word has

to be allocated when the variable to be protected is
allocated, and the canary has to be initialized when
the variable is initialized. This is problematic; to
maintain compatibility with existing programs, we
do not want to change the size of the protected vari-
able, so we cannot simply add the canary word to
the definition of the data structure. Rather, the space
allocation for the canary word must be “special
cased” into each of the kinds of allocation for vari-
ables, i.e. stack, heap, and static data areas, stand-
alone vs. within structures and arrays, etc.

Checking the Canary: The integrity of the canary
word needs to be verified every time the protected
variable is loaded from memory into a register, or
otherwise is read. This too is problematic, because
the action “read from memory” is not well defined
in the compiler’s semantics; the compiler is more
concerned with when the variable is actually used,
and various optimization algorithms feel free to
load the variable from memory into registers when-
ever it is convenient. Again, the loading operation
needs to be “special cased” for all of the circum-
stances that cause the value to be read from mem-
ory.
We have built an initial prototype of PointGuard

(again, a gcc enhancement) that provides canary pro-
tection to function pointers that are statically allocated
and are not members of some other aggregate (i.e. a
struct or an array). This implementation is far from
complete. When PointGuard is complete, the combina-
tion of StackGuard and PointGuard protection should
create executable programs that are virtually immune to
buffer overflow attacks.

Only the relatively obscure form of buffer overflow
attack that corrupts a non-pointer variable to affect the
program’s logic will escape PointGuard’s attention. To
address this problem, the PointGuard compiler will
include a special “canary” storage class that forces
canary protection onto arbitrary variables. Thus the
programmer could manually add PointGuard protection
to any variable deemed to be security-sensitive.

3.5 Compatibility and Performance 
Considerations

Code pointer integrity checking has the disadvan-
tage relative to bounds checking that it does not per-
fectly solve the buffer overflow problem. However, it
has substantial advantages in terms of performance,
compatibility with existing code, and implementation

effort, as follows:
Performance: Bounds checking must (in principle)

perform a check every time an array element is read
or written to. In contrast, code pointer integrity
checking must perform a check every time a code
pointer is dereferenced, i.e. every time a function
returns or an indirect function pointer is called. In C
code, code pointer dereferencing happens a great
deal less often than array references, imposing sub-
stantially lower overhead. Even C++ code, where
virtual methods make indirect function calls com-
mon place, still may access arrays more often than it
calls virtual methods, depending on the application.

Implementation Effort: The major difficulty with
bounds checking for C code is that C semantics
make it difficult to determine the bounds of an
array. C mixes the concept of an array with the con-
cept of a generic pointer to an object, so that a refer-
ence into an array of elements of type foo is
indistinguishable from a pointer to an object of type
foo. Since a pointer to an individual object does
not normally have bounds associated with it, it is
only one machine word in size, and there is no
where to store bounds information. Thus bounds
checking implementations for C need to resort to
exotic methods to recover bounds information;
array references are no longer simple pointers, but
rather become pointers to buffer descriptors.

Compatibility with Existing Code: Some of the
bounds checking methods such as Jones and Kelly
[26] seek to preserve compatibility with existing
programs, and go to extraordinary lengths to retain
the property that “sizeof(int) ==
sizeof(void *)”, which increases the perfor-
mance penalty for bounds checking. Other imple-
mentations resort to making a pointer into a tuple
(“base and bound”, “current and end”, or some vari-
ation there of). This breaks the usual C convention
of “sizeof(int) == sizeof(void *)”,
producing a kind-of C compiler that can compile a
limited subset of C programs; specifically those that
either don’t use pointers, or those crafted to work
with such a compiler.
Many of our claims of the advantages of code

pointer integrity checking vs. bounds checking are
speculative. However, this is because of the distinct
lack of an effective bounds checking compiler for C
code. There does not exist any bounds checking com-
piler capable of approaching the compatibility and per-
formance abilities of the StackGuard compiler. While
this makes for unsatisfying science with regard to our
performance claims, it supports our claims of compati-
bility and ease of implementation. To test our perfor-
mance claims, someone would have to invest the effort
to build a fully compatible bounds checking enhance-
ment to a C compiler that, unlike Purify [24] is not
intended for debugging.
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4 Effective Combinations
Here we compare the varieties of vulnerabilities and

attacks described in Section 2 with the defensive mea-
sures described in Section 3 to determine which combi-
nations of techniques offer the potential to completely
eliminate the buffer overflow problem, and at what
cost. Table 3 shows the cross-bar of buffer overflow
attacks and defenses. Across the top is the set of places
where the attack code is located (Section 2.1) and down
the side is the set of methods for corrupting the pro-
gram’s control flow (Section 2.2). In each cell is the set
of defensive measures that is effective against that par-
ticular combination. We omit the bounds checking
defense (Section 3.3) from Table 3. While bounds
checking is effective in preventing all forms of buffer
overflow attack, the costs are also prohibitive in many
cases.

The most common form of buffer overflow attack is
the attack against an activation record that injects code
into a stack-allocated buffer. This form follows from
the recipes published in late 1996 [30, 28, 35]. Not sur-
prisingly, both of the early defenses (the Non-execut-
able stack [19, 18] and StackGuard [14]) both are
effective against this cell. The non-executable stack
expands up the column to cover all attacks that inject
code into stack allocated buffers, and the StackGuard
defense expands to cover all attacks that corrupt activa-
tion records. These defenses are completely compatible
with each other, and so using both provides substantial
coverage of the field of possible attacks.

Of the remaining attacks not covered by the combi-
nation of the non-executable stack and the StackGuard
defense, many can be automatically prevented by the
code pointer integrity checking proposed by Point-
Guard. The remaining attacks that corrupt arbitrary
program variables can be nominally addressed by
PointGuard, but require significant manual interven-

tion. Fully automatic PointGuard defense would require
canary integrity checking on all variables, at which
point bounds checking begins to become competitive
with integrity checking.

It is interesting to note that the first popular buffer
overflow attack (the Morris Worm [21, 37]) used this
last category of buffer overflow to corrupt a file name,
and yet virtually no contemporary buffer overflow
attacks uses this method, despite the fact that none of
the current or proposed defenses is strongly effective
against this form of attack. It is unclear whether the
present dearth of logic-based buffer overflow attacks is
because such vulnerabilities are highly unusual, or sim-
ply because attacks are easier to construct when code
pointers are involved.

5 Conclusions
We have presented a detailed categorization and

analysis of buffer overflow vulnerabilities, attacks, and
defenses. Buffer overflows are worthy of this degree of
analysis because they constitute a majority of security
vulnerability issues, and a substantial majority of
remote penetration security vulnerability issues. The
results of this analysis show that a combination of the
StackGuard [14, 9] defense and the non-executable
stack defense [19, 18] serve to defeat many contempo-
rary buffer overflow attacks, and that the proposed
PointGuard defense will address most of the remaining
contemporary buffer overflow attacks. Of note is the
fact that the particular form of buffer overflow attack
used by Morris in 1987 to “popularize” the buffer over-
flow technique is both uncommon in contemporary
attacks, and not easily defended against using existing
methods.

Table 3:  Buffer Overflow Attacks and Defenses

Attack Code Location

Resident Stack Buffer Heap Buffer Static Buffer

Code 
Pointer 
types

Activation 
Record

StackGuard StackGuard, Non-
executable stack

StackGuard StackGuard

Function 
Pointer

PointGuard PointGuard, Non-
executable stack

PointGuard PointGuard

Longjmp 
Buffer

PointGuard PointGuard, Non-
executable stack

PointGuard PointGuard

Other 
Variables

Manual 
PointGuard

Manual Point-
Guard, Non-exe-
cutable stack

Manual Point-
Guard

Manual Point-
Guard
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