
Computer Science 5271
Fall 2021
Midterm exam
October 25th, 2021
Time Limit: 75 minutes, 2:30pm-3:45pm

• Before starting the exam, you can fill out your name and other information of this page, but
don’t open the exam until you are directed to start. Don’t put any of your answers on this
page.

• This exam contains 7 pages (including this cover page) and 4 questions. Once we tell you
to start, please check that no pages are missing, and write your username in the upper-right
corner of each subsequent page.

• You may use any textbooks, notes, or printouts you wish during the exam, but you may not
use any electronic devices: no calculators, smart phones, laptops, etc.

• You may ask clarifying questions of the instructor or TAs, but no communication with other
students is allowed during the exam.

• Please read all questions carefully before answering them. Remember that we can only grade
what you write on the exam, so it’s in your interest to show your work and explain your
thinking. But write only on the printed sides of exam pages.

• By signing below you certify that you agree to follow the rules of the exam, and that the
answers on this exam are your own work only.

The exam will end promptly at 3:45pm. Good luck!

Your name (print):

Your UMN email/X.500: @umn.edu

Number of rows ahead of you: Number of seats to your left:

Sign and date:

Question Points Score

1 30

2 20

3 30

4 20

Total: 100

Computer Science 5271 Midterm exam - Page 2 of 7; Username:

1. (30 points) Multiple choice. Each question has only one correct answer: circle its letter.

(a) Suppose that the UMN IT managers are considering increasing the minimum password
length from 16 to 24 characters, to improve resistance to offline guessing attacks. Sup-
pose a user has selected a 24-character password in which each character is any up-
percase letter, lowercase letter, or digit independently and with equal probability (e.g.,
SQMq1bvXfddhhGH24W2DV2fv). Which of these formulas gives the total number of possible
passwords?

A. 2624 + 2624 + 1024 ≈ 2114

B. 2426 + 2426 + 2410 ≈ 2120

C. (26 + 26 + 10)24 ≈ 2143

D. 24(26+26+10) ≈ 2284

E. 2624 · 2624 · 1024 ≈ 2305

(b) An attacker with access to a million devices, each of which can check a billion passwords
per second, can try about 275 passwords in a year. Whichever of the computations in
the previous question is correct, this suggests that an attack against a password chosen
according to the process in that question would be infeasible. However, many objections
might still be raised to a policy of requiring 24-character passwords containing letters and
digits. Which of the following is not a reasonable criticism?

A. Users will make more typos with 24-character passwords.

B. Users will have a hard time remembering 24-character passwords.

C. A password cannot be secure unless it contains punctuation characters like (or
@.

D. Users will not generate their passwords uniformly at random.

E. A 16-character length would be enough to resist guessing attacks.

(c) The following properties are true for all values of 32-bit two’s complement integer values
x and y (i.e., C ints), except:

A. x + 1 != x

B. 5*x == (x << 2) + x

C. x * y == y * x

D. x + -x == 0

E. -x <= x

(d) Consider the set of positive integers where the relationship a v b is defined to hold when a
divides b evenly (i.e., there is another positive integer c such that ac = b). This operation
forms a partial order. If we want to make it a lattice, what operation should be the meet
a u b?

A. min(a, b)

B. max(a, b)

C. b(a + b)/2c (bxc represents rounding down to the nearest integer)

D. gcd(a, b)

E. a + b

(e) This number x is the multiplicative inverse of 3 mod 232, i.e. 3·x ≡ 1 (mod 232). (Possibly
relevant facts: 3*x = x + (x << 1); 0xffffffff = 3*0x55555555; 3*6667 = 20001)

A. 0x33333333 B. 0x55555555 C. 0x80000003 D. 0xaaaaaaab E. 0xfffffffd

Page 2

Computer Science 5271 Midterm exam - Page 3 of 7; Username:

(f) Compared to x86-32, x86-64 has several features that make things easier for defenders and
harder for attackers. Which of these is not such a difference?

A. The stack grows upwards, so a buffer overflow can’t overwrite the return address

B. Expanded RIP-relative addressing and more registers allow more efficient PIC

C. Arguments in registers cannot be corrupted via a stack buffer overflow

D. A larger address space allows ASLR to have more entropy

E. All valid x86-64 user-space addresses contain null bytes

(g) When logging on to the course Canvas page, you must use a registered smartphone or
security token in addition to providing a password. This is an example of:

A. Multi-factor authentication

B. Separation of duty

C. A CAPTCHA

D. Single sign-on

E. Biometric authentication

(h) Suppose you want to use a format-string vulnerability to cause a program to output a lot
of output, say n characters, with a short format string. About how long of a format string
is required?

A. 2 characters

B. log2(log2 n) characters

C. log10 n characters

D.
√
n characters

E. (4/16) · n characters

(i) On the CSE Labs machines, the standard umask is 0077, which causes files to be created
without permissions for other users. This is an example of which of the following secure
design principles?

A. Complete mediation

B. Open design

C. Fail-safe defaults

D. Least privilege

E. Economy of mechanism

(j) For an attack to be possible, a use-after-free bug usually needs to involve a memory region
that was first allocated with one type (“type 1”) being reused with a different type (“type
2”). Suppose there is an attack possible where a value is written with type 1 before the
value is reallocated, then read with type 2 later. For this attack to work, what other
problem must the program have?

A. Null pointer dereference

B. Format string vulnerability

C. Race condition

D. Infinite recursion

E. Reading uninitialized data

Page 3

Computer Science 5271 Midterm exam - Page 4 of 7; Username:

2. (20 points) Matching vulnerability types.

On the left side are ten examples of C code patterns that represent various security-relevant
bugs. Fill in the blank next to each with a letter corresponding to the name of a vulnerability
type from the right side. Every vulnerability type is used exactly once, except that “Buffer
Overflow” is used exactly two times. You can assume any variables named evil or bad might be
under the control of an attacker, and have not had relevant security checks performed. Ellipses
... represent omitted code.

(a)

num_objs = evil;

p = malloc(num_objs * sizeof(obj));

(b)

p = q = malloc(...);

free(p);

q->field = evil;

(c)

char buf[30];

for (i = 0; i < bad; i++)

buf[i] = evil[i];

(d) system("cp a b");

(e)

free(p);

...

free(p);

(f) printf(evil, 42);

(g) gets(buf);

(h)

if (access(fname, R_OK) == 0)

fd = open(fname, O_RDONLY);

(i)

char path[] = "/tmp/x.XXXXXXX";

mktemp(path);

fd = open(path, O_WRONLY|O_CREAT);

(j)

snprintf(buf, sizeof(buf),

"/dir/%s", evil);

fd = open(buf, O_RDWR);

A. Use after free

B. TOCTTOU race

C. Integer overflow

D. Format string vulnerability

E. Directory traversal

F. File creation race

G. Double free

H. Insecure PATH dependency

I. Buffer overflow

I. Buffer overflow

Page 4

Computer Science 5271 Midterm exam - Page 5 of 7; Username:

3. (30 points) Buffer overflow attack.

The following function from a Linux/x86-64 program has a buffer overflow vulnerability. In
this question, you’ll figure out the stack layout of the function and what data should be used
in the overflow to build a successful attack.

Specifically, assume that normally the function would return to the address 0x4011fb, and that
the argument s points to a string under the attacker’s control. Your goal as the attacker it to
make the execution instead jump to the address 0x4d5271, where you have arranged for some
shellcode to exist. Below are excerpts of the relevant code in C and assembly language.

int global_fd = -1;

void func(char *s) {

int fd = 0;

char buf[16];

fd = open("/tmp/foo", O_RDONLY);

strcpy(buf, s);

if (fd != global_fd) {

exit(1);

}

}

.LC0: .string "/tmp/foo"

func: pushq %rbp

movq %rsp, %rbp

subq $48, %rsp

movq %rdi, -40(%rbp)

movl $0, -4(%rbp)

movl $0, %esi

movl $.LC0, %edi

movl $0, %eax

call open

movl %eax, -4(%rbp)

movq -40(%rbp), %rdx

leaq -32(%rbp), %rax

movq %rdx, %rsi

==> movq %rax, %rdi

call strcpy

movl global_fd(%rip), %eax

cmpl %eax, -4(%rbp)

je .L3

movl $1, %edi

call exit

.L3: nop

leave

ret

Use this code to answer the questions on the following page.

Recall that strcpy copies a sequence of characters pointer to by its second argument to the
location pointed to by its first argument, up to a null terminator. The open system call opens
the file specified in its first arguments for the operation(s) specified in its second argument,
returning a non-negative file descriptor if successful or -1 on an error. Assume that the variable
global fd still has the value -1 when the attack occurs.

Page 5

Computer Science 5271 Midterm exam - Page 6 of 7; Username:

(a) First, let’s draw a diagram of the function’s stack frame layout. In particular, draw the
layout right before the call to strcpy, at the location marked with an arrow in the assembly
code. On the left is a blank picture of a stack frame, broken into 8-byte segments and
labelled by offsets relative to the frame pointer %rbp. On the right is a list of descriptions
of contents that might appear in each segment. Fill in each box on the left with a letter
from the right. Some descriptions might be used more than once, others not at all.

A. Unused/padding

B. global fd and unused/padding

C. Stack canary

D. Return address

E. Saved %rbx

F. Saved %rbp

G. buf[0 .. 7]

H. buf[8 .. 15]

I. s

J. fd and unused/padding

(b) Now, show what contents for the string s should be used to create a successful attack that
hijacks control flow. Each blank below represents one character in the attack string, in
order of increasing address. Fill in each blank with one character. You can write printable
ASCII characters like letters as themselves, and for non-printable characters use C escapes
like \0 for null, \n for newline, or \xfa for a byte with hex value 0xfa. You may not need
to use every blank. The first 16 characters of the string that will go inside the bounds of
buf won’t be part of the attack, so we’ve filled them in with regular letters.

A A A A A A A A B B B B B B B B

Page 6

Computer Science 5271 Midterm exam - Page 7 of 7; Username:

4. (20 points) Matching definitions and concepts. Fill in each blank with the letter of the corre-
sponding answer. Each answer is used exactly once.

(a) A value that would cause copying to stop

(b) A bug allowing memory reuse with a different type

(c) Not connecting networks at different levels

(d) An attack that can be in binary or interpreted software

(e) An instruction that has no side-effects

(f) A memory permissions bit used to implement W ⊕ X

(g) A program that runs with the identity of its file owner

(h) The group of users who can become the superuser

(i) Slightly modifying an OS kernel to run better in a VM

(j) An abstract model for MLS confidentiality

(k) Privilege based on identity, not a capability

(l) A measure of the uncertainty in a probability distribution

(m) An attack accessing unintended parts of the filesystem

(n) The standard username for UID 0

(o) Binary-only software without symbol information

(p) For example, ⊆ on sets

(q) A mail server designed for increased security

(r) A defense that changes the base address of a memory region

(s) An invariant true about the results of a function

(t) Unintended communication with cooperating sender and receiver

A. air gap B. ambient authority C. ASLR D. Bell-LaPadula E. code injection
F. COTS G. covert channel H. directory traversal I. entropy J. NOP K. NX
L. paravirtualization M. partial order N. postcondition O. Postfix P. root

Q. setuid R. terminator canary S. use after free T. wheel

Page 7

