
Computer Science 5271
Fall 2021
Midterm exam (solutions)
October 25th, 2021
Time Limit: 75 minutes, 2:30pm-3:45pm

� Before starting the exam, you can fill out your name and other information of this page, but
don’t open the exam until you are directed to start. Don’t put any of your answers on this
page.

� This exam contains 10 pages (including this cover page) and 4 questions. Once we tell you
to start, please check that no pages are missing, and write your username in the upper-right
corner of each subsequent page.

� You may use any textbooks, notes, or printouts you wish during the exam, but you may not
use any electronic devices: no calculators, smart phones, laptops, etc.

� You may ask clarifying questions of the instructor or TAs, but no communication with other
students is allowed during the exam.

� Please read all questions carefully before answering them. Remember that we can only grade
what you write on the exam, so it’s in your interest to show your work and explain your
thinking. But write only on the printed sides of exam pages.

� By signing below you certify that you agree to follow the rules of the exam, and that the
answers on this exam are your own work only.

The exam will end promptly at 3:45pm. Good luck!

Your name (print):

Your UMN email/X.500: @umn.edu

Number of rows ahead of you: Number of seats to your left:

Sign and date:

Question Points Score

1 30

2 20

3 30

4 20

Total: 100

Computer Science 5271 Midterm exam (solutions) - Page 2 of 10

1. (30 points) Multiple choice. Each question has only one correct answer: circle its letter.

(a) Suppose that the UMN IT managers are considering increasing the minimum password
length from 16 to 24 characters, to improve resistance to offline guessing attacks. Sup-
pose a user has selected a 24-character password in which each character is any up-
percase letter, lowercase letter, or digit independently and with equal probability (e.g.,
SQMq1bvXfddhhGH24W2DV2fv). Which of these formulas gives the total number of possible
passwords?

A. 2624 + 2624 + 1024 ≈ 2114

B. 2426 + 2426 + 2410 ≈ 2120

C. (26 + 26 + 10)24 ≈ 2143

D. 24(26+26+10) ≈ 2284

E. 2624 · 2624 · 1024 ≈ 2305

There are 62 choices for each character, and the choices for each character are independent,
so they multiply across all the positions, which is the same as exponentiation. If you are
not feeling confident in remembering in which direction the exponentiation goes, you might
try thinking through a smaller familiar example, like that if you have three characters that
are each digits, there are 1000 possibilities.

(b) An attacker with access to a million devices, each of which can check a billion passwords
per second, can try about 275 passwords in a year. Whichever of the computations in
the previous question is correct, this suggests that an attack against a password chosen
according to the process in that question would be infeasible. However, many objections
might still be raised to a policy of requiring 24-character passwords containing letters and
digits. Which of the following is not a reasonable criticism?

A. Users will make more typos with 24-character passwords.

B. Users will have a hard time remembering 24-character passwords.

C. A password cannot be secure unless it contains punctuation characters
like (or @.

D. Users will not generate their passwords uniformly at random.

E. A 16-character length would be enough to resist guessing attacks.

If you repeated the calculation from the previous question with an exponent of 16 instead
of 24, the exponent would be two-thirds, namely around 295, which is still comfortably
larger than 275 which came from some generous assumptions. A, B, and D all raise valid
usability concerns about long passwords. But C is not sensible. Asking users to choose
passwords from a larger set of characters can increase security if they are used randomly,
since it increases the base in a computation like the one in the previous question. But
making passwords longer also increases entropy; if a password is long enough, it can have
high entropy even with a more limited character set.

(c) The following properties are true for all values of 32-bit two’s complement integer values
x and y (i.e., C ints), except:

A. x + 1 != x

B. 5*x == (x << 2) + x

C. x * y == y * x

D. x + -x == 0

E. -x <= x

Page 2

Computer Science 5271 Midterm exam (solutions) - Page 3 of 10

E fails if x is already negative and -x is positive. For A, notice that even if there is
overflow, the low bits of x + 1 and x are always different. For B, left shifting by 2 is the
same as multiplying by 4.

(d) Consider the set of positive integers where the relationship a v b is defined to hold when a
divides b evenly (i.e., there is another positive integer c such that ac = b). This operation
forms a partial order. If we want to make it a lattice, what operation should be the meet
a u b?

A. min(a, b)

B. max(a, b)

C. b(a + b)/2c (bxc represents rounding down to the nearest integer)

D. gcd(a, b)

E. a + b

The meet is also called the greatest lower bound. a u b should be less than a and less
than b, but greater than or equal to any other value that is also less than both of them.
In a diagram, it’s the closest point below a and b where they come together. In the case
of divisibility, it needs to be a divisor of a and a divisor of b (a common divisor), but it
should be the largest among all the common divisors, which is just the definition of the
GCD (greatest common divisor). You might also recall that if you represent a and b in
their prime factorization, you get the GCD by taking only the divisors that they have in
common.

(e) This number x is the multiplicative inverse of 3 mod 232, i.e. 3·x ≡ 1 (mod 232). (Possibly
relevant facts: 3*x = x + (x << 1); 0xffffffff = 3*0x55555555; 3*6667 = 20001)

A. 0x33333333 B. 0x55555555 C. 0x80000003 D. 0xaaaaaaab E. 0xfffffffd

The most direct way to choose among these answers is to just the compute just the lowest
hex digit of multiplying each of them by 3, which is just computation mod 16. 3 · 3 = 9
(mod 16), 5 · 3 = 15 (mod 16), 11 · 3 = 33 = 1 (mod 16), and 14 · 3 = 42 = 10 (mod 16).
The low hex digit has to be 1 if the entire product is going to be 0x00000001. If you want
to think about the multiplication in binary, the first fact reminds you that it is equivalent to
shifting and adding. The second fact is helpful if you want to solve the equation 3·x = 232+1
because it tells you that 232 = 1 (mod 3), so 2 · 232 + 2 will be a multiple of 3. The third
fact is the solution to an analogous version of the problem in decimal (mod 104): 6667 is
two thirds of 10,000, rounding up, while answer D is two thirds of 232, rounding up.

(f) Compared to x86-32, x86-64 has several features that make things easier for defenders and
harder for attackers. Which of these is not such a difference?

A. The stack grows upwards, so a buffer overflow can’t overwrite the
return address

B. Expanded RIP-relative addressing and more registers allow more efficient PIC

C. Arguments in registers cannot be corrupted via a stack buffer overflow

D. A larger address space allows ASLR to have more entropy

E. All valid x86-64 user-space addresses contain null bytes

B-E are all true features of current x86-64, or its standard calling convention in the case
of C. E holds because only the low 48 bits of addresses may be non-zero. The premise of
A is false: the x86-64 stack grows downwards the same as the x86-32 stack. Changing

Page 3

Computer Science 5271 Midterm exam (solutions) - Page 4 of 10

the direction of the stack, while keeping arrays growing towards higher addresses as well,
would make it so that overflowing an array in the positive direction could not overwrite
the return address of the same function, though the stack frames of more recent functions
might still be corrupted.

(g) When logging on to the course Canvas page, you must use a registered smartphone or
security token in addition to providing a password. This is an example of:

A. Multi-factor authentication

B. Separation of duty

C. A CAPTCHA

D. Single sign-on

E. Biometric authentication

You might have noticed that the name of the product that enforces this feature, “Duo”, is
based on “two-factor authentication”; any number of factors more than 1 is “multi-factor.”

(h) Suppose you want to use a format-string vulnerability to cause a program to output a lot
of output, say n characters, with a short format string. About how long of a format string
is required?

A. 2 characters

B. log2(log2 n) characters

C. log10 n characters

D.
√
n characters

E. (4/16) · n characters

This question is intended to capture a technique that you should have encountered in Ex-
ercise Set 1. A more verbose way of describing the question would have been to say that
we are interested in a general technique which can produce an output of any desired length,
and among all such techniques we’re interested in the one that needs the shortest format
string. For A, you might be thinking of %s. If you are lucky that the appropriate argu-
ment location holds a pointer to a large memory region without nulls, %s can cause many
characters to be printed, but if you’re unlucky you might get only a few characters or the
program might just crash. The formula in E is achievable for instance by using %0lx,
which is 4 characters long and prints 16 hex digits on a system like x86-64 where long is a
64-bit type. But C is also achievable by specifying padding on a numeric format specifier,
as in %999d, and requires a much shorter format string. I don’t know of any format string
patterns that would match the formulas in B or D. (Note that the formula choices were
listed in increasing order.)

(i) On the CSE Labs machines, the standard umask is 0077, which causes files to be created
without permissions for other users. This is an example of which of the following secure
design principles?

A. Complete mediation

B. Open design

C. Fail-safe defaults

D. Least privilege

E. Economy of mechanism

You might have noticed we were careful to avoid using the word “default” in the question,
but it would have been doubly appropriate: the umask represents the default permissions for

Page 4

Computer Science 5271 Midterm exam (solutions) - Page 5 of 10

files that programs can further restrict, and 0077 is the default value of the umask. You can
change the permissions on your files to anything you want, but the system administrators
decided it would be best if files start out private, and are made public only if you explicitly
choose for them to be. “Least privilege” might also sound plausible, because this choices
causes other users to have fewer privileges to access your files than if a different umask
were used. But the principle of least privilege is about selecting this privileges that a
subject should have, based on what is needed for its normal operation. The umask is a
setting related to objects rather than subjects, and it’s a default for when you haven’t given
thought to what the appropriate setting should be.

(j) For an attack to be possible, a use-after-free bug usually needs to involve a memory region
that was first allocated with one type (“type 1”) being reused with a different type (“type
2”). Suppose there is an attack possible where a value is written with type 1 before the
value is reallocated, then read with type 2 later. For this attack to work, what other
problem must the program have?

A. Null pointer dereference

B. Format string vulnerability

C. Race condition

D. Infinite recursion

E. Reading uninitialized data

C doesn’t make any guarantees about the contents of memory allocated with malloc: it might
contain any values, in particular because it might have been reused from another purpose. Be-
cause of this feature, correct programs need to do their own initialization of memory from
malloc, and this initialization will overwrite the reused contents. The ordering of events men-
tioned in the question, where a write happens before reallocation and a read happens after, would
only be useful to the attacker if the program also didn’t follow this initialization rule.

Page 5

Computer Science 5271 Midterm exam (solutions) - Page 6 of 10

2. (20 points) Matching vulnerability types.

On the left side are ten examples of C code patterns that represent various security-relevant
bugs. Fill in the blank next to each with a letter corresponding to the name of a vulnerability
type from the right side. Every vulnerability type is used exactly once, except that “Buffer
Overflow” is used exactly two times. You can assume any variables named evil or bad might be
under the control of an attacker, and have not had relevant security checks performed. Ellipses
... represent omitted code.

(a) C

num_objs = evil;

p = malloc(num_objs * sizeof(obj));

(b) A

p = q = malloc(...);

free(p);

q->field = evil;

(c) I

char buf[30];

for (i = 0; i < bad; i++)

buf[i] = evil[i];

(d) H system("cp a b");

(e) G

free(p);

...

free(p);

(f) D printf(evil, 42);

(g) I gets(buf);

(h) B

if (access(fname, R_OK) == 0)

fd = open(fname, O_RDONLY);

(i) F

char path[] = "/tmp/x.XXXXXXX";

mktemp(path);

fd = open(path, O_WRONLY|O_CREAT);

(j) E

snprintf(buf, sizeof(buf),

"/dir/%s", evil);

fd = open(buf, O_RDWR);

A. Use after free

B. TOCTTOU race

C. Integer overflow

D. Format string vulnerability

E. Directory traversal

F. File creation race

G. Double free

H. Insecure PATH dependency

I. Buffer overflow

I. Buffer overflow

Page 6

Computer Science 5271 Midterm exam (solutions) - Page 7 of 10

3. (30 points) Buffer overflow attack.

The following function from a Linux/x86-64 program has a buffer overflow vulnerability. In
this question, you’ll figure out the stack layout of the function and what data should be used
in the overflow to build a successful attack.

Specifically, assume that normally the function would return to the address 0x4011fb, and that
the argument s points to a string under the attacker’s control. Your goal as the attacker it to
make the execution instead jump to the address 0x4d5271, where you have arranged for some
shellcode to exist. Below are excerpts of the relevant code in C and assembly language.

int global_fd = -1;

void func(char *s) {

int fd = 0;

char buf[16];

fd = open("/tmp/foo", O_RDONLY);

strcpy(buf, s);

if (fd != global_fd) {

exit(1);

}

}

.LC0: .string "/tmp/foo"

func: pushq %rbp

movq %rsp, %rbp

subq $48, %rsp

movq %rdi, -40(%rbp)

movl $0, -4(%rbp)

movl $0, %esi

movl $.LC0, %edi

movl $0, %eax

call open

movl %eax, -4(%rbp)

movq -40(%rbp), %rdx

leaq -32(%rbp), %rax

movq %rdx, %rsi

==> movq %rax, %rdi

call strcpy

movl global_fd(%rip), %eax

cmpl %eax, -4(%rbp)

je .L3

movl $1, %edi

call exit

.L3: nop

leave

ret

Use this code to answer the questions on the following page.

Recall that strcpy copies a sequence of characters pointer to by its second argument to the
location pointed to by its first argument, up to a null terminator. The open system call opens
the file specified in its first arguments for the operation(s) specified in its second argument,
returning a non-negative file descriptor if successful or -1 on an error. Assume that the variable
global fd still has the value -1 when the attack occurs.

(a) First, let’s draw a diagram of the function’s stack frame layout. In particular, draw the
layout right before the call to strcpy, at the location marked with an arrow in the assembly
code. On the left is a blank picture of a stack frame, broken into 8-byte segments and
labelled by offsets relative to the frame pointer %rbp. On the right is a list of descriptions
of contents that might appear in each segment. Fill in each box on the left with a letter
from the right. Some descriptions might be used more than once, others not at all.

Page 7

Computer Science 5271 Midterm exam (solutions) - Page 8 of 10

A. Unused/padding

B. global fd and unused/padding

C. Stack canary

D. Return address

E. Saved %rbx

F. Saved %rbp

G. buf[0 .. 7]

H. buf[8 .. 15]

I. s

J. fd and unused/padding

The oldest part of the stack frame, at the top in this figure, is set up when the function
starts execution. The first two instructions push a copy of the calling function’s %rbp on
the stack, and then copy the stack pointer pointing at that location back to %rbp, which sets
up that %rbp (offset 0) points at the saved %rbp F, and that is the reference point for the
rest of the numbering. The only thing written to the stack earlier than that is the return
address that was written by the calling function, which is above it (D). The other stack
accesses go via %rbp. The variable fp is copied from %rax as the return value of open and
accessed again in the if statement comparison: this matches the usage of -4(%rbp). -4 is
not a multiple of 8, because an int is only 4 bytes while the stack slots are 8 bytes, so fd

is stored in the top half of the box and the lower half is unused, J. The variable s is copied
from the (first and only) function parameter in %rdi, and then copied to be the second
argument (%rsi) to strcpy. That matches the usage of -40(%rbp), so I goes there. buf

is 16 bytes long, so it will extend across at least two boxes, and addresses are increasing
upwards in this figure, so G should be below H. In particular buf is passed as the first
argument to strcpy, and you can see that this is computed as -32(%rbp) (the code uses
lea instead of mov because what is being passed is a pointer to the memory region, not its
contents). Thus G goes in the box starting at -32(%rbp) and H in the box above it. The
remaining locations in the stack frame are not accessed, so they get A. global fd does
not appear in the picture because, as the name suggests, it is a global variable stored in the
data segment rather than on the stack. This code was not compiled with stack canaries,
which will make the next part easier. The caller’s %rbx does not need to be saved because
this function doesn’t need to use %rbx itself.

Page 8

Computer Science 5271 Midterm exam (solutions) - Page 9 of 10

(b) Now, show what contents for the string s should be used to create a successful attack that
hijacks control flow. Each blank below represents one character in the attack string, in
order of increasing address. Fill in each blank with one character. You can write printable
ASCII characters like letters as themselves, and for non-printable characters use C escapes
like \0 for null, \n for newline, or \xfa for a byte with hex value 0xfa. You may not need
to use every blank. The first 16 characters of the string that will go inside the bounds of
buf won’t be part of the attack, so we’ve filled them in with regular letters.

A A A A A A A A B B B B B B B B

x x x x x x x x x x x \xff \xff \xff \xff

x x x x x x x \x71 \x52 \x4d

Each group of 8 blanks here should line up with one of the blocks in the previous diagram,
where the blocks pre-filled with A and B correspond to G and H respectively. In our sample
answer we’ve used lowercase x in places where any non-null byte value could be used: this
includes the unused space A, the unused half of the block J that also contains fd, and the
saved %rbp. If the attack succeeds it doesn’t matter if the saved %rbp is corrupted, because
it will never be used. In order to prevent the if comparison from exiting the program, fd
should be overwritten with a value that makes it always equal to global fd or -1. That is
achieved by making each byte 0xff in hex, which is the all 1-bits value. It might seem like
a problem that the full value we want to overwrite the return address with, which you could
write as 0x00000000004d5271 to emphasize that it is 64-bits, contains null bytes that will
cause strcpy to stop copying. However, this turns out not to be a problem because the top
bytes of the old and new values are the same and don’t need to be changed. It’s enough to
overwrite the three bytes that need to be changed, least-significant first because x86-64 is
little-endian, and then the terminating null byte can overwrite the next byte that should be
0 anyway. You could have also written the last byte as \x00 for emphasis, but note that
it wouldn’t have worked to have a null byte anywhere in the middle of the attack string,
because the bytes after it wouldn’t be copied.

Note that because we graded the two halves of this question separately in Gradescope, we
graded your answers for part (b) just against what attacks would work, not for consistency
or inconsistency with your answer in part (a).

Page 9

Computer Science 5271 Midterm exam (solutions) - Page 10 of 10

4. (20 points) Matching definitions and concepts. Fill in each blank with the letter of the corre-
sponding answer. Each answer is used exactly once.

(a) R A value that would cause copying to stop

(b) S A bug allowing memory reuse with a different type

(c) A Not connecting networks at different levels

(d) E An attack that can be in binary or interpreted software

(e) J An instruction that has no side-effects

(f) K A memory permissions bit used to implement W ⊕ X

(g) Q A program that runs with the identity of its file owner

(h) T The group of users who can become the superuser

(i) L Slightly modifying an OS kernel to run better in a VM

(j) D An abstract model for MLS confidentiality

(k) B Privilege based on identity, not a capability

(l) I A measure of the uncertainty in a probability distribution

(m) H An attack accessing unintended parts of the filesystem

(n) P The standard username for UID 0

(o) F Binary-only software without symbol information

(p) M For example, ⊆ on sets

(q) O A mail server designed for increased security

(r) C A defense that changes the base address of a memory region

(s) N An invariant true about the results of a function

(t) G Unintended communication with cooperating sender and receiver

A. air gap B. ambient authority C. ASLR D. Bell-LaPadula E. code injection
F. COTS G. covert channel H. directory traversal I. entropy J. NOP K. NX
L. paravirtualization M. partial order N. postcondition O. Postfix P. root

Q. setuid R. terminator canary S. use after free T. wheel

Page 10

