
Computer Science 5271
Fall 2015
Midterm exam (solutions)
October 19th, 2015
Time Limit: 75 minutes, 4:00pm-5:15pm

• This exam contains 8 pages (including this cover page) and 4 questions. Once we tell you to
start, please check that no pages are missing.

• Before starting the exam, you can fill out your name and other information of this page, but
don’t open the exam until you are directed to start. Don’t put any of your answers on this
page.

• You may use any textbooks, notes, or printouts you wish during the exam, but you may not
use any electronic devices: no calculators, smart phones, laptops, etc.

• You may ask clarifying questions of the instructor or TA, but no communication with other
students is allowed during the exam.

• Please read all questions carefully before answering them. Remember that we can only grade
what you write on the exam, so it’s in your interest to show your work and explain your
thinking.

• By signing below you certify that you agree to follow the rules of the exam, and that the
answers on this exam are your own work only.

The exam will end promptly at 5:15pm. Good luck!

Your name (print):

Your UMN email/X.500: @umn.edu

Number of rows ahead of you: Number of seats to your left:

Sign and date:

Question Points Score

1 20

2 36

3 24

4 20

Total: 100

Computer Science 5271 Midterm exam (solutions) - Page 2 of 8 October 19th, 2015

1. (20 points) Matching definitions and concepts. Fill in each blank with the letter of the corre-
sponding answer. Each answer is used exactly once.

(a) G Windows acronym for W ⊕ X

(b) L Canary value location

(c) B Security token that both designates a resource and provides authority to access it

(d) K Stack pointer register

(e) M Attack technique that requires overlapping instructions

(f) C Windows acronym for a CFI-like defense

(g) O An invariant true on calling a function

(h) D Unix system call to change file permissions

(i) A Set of allowed subjects and actions for a resource

(j) I Holds Linux/x86 system call number

(k) Q Contest to find security bugs in Google Chrome

(l) T CPU state with privileged instructions disabled

(m) F Password hashing function

(n) N Page-table bit that denies execute permission

(o) S Modifying code so it can run at a new memory base address

(p) P The power to take security-relevant actions

(q) R Attack technique based on instruction gadgets

(r) E Unix system call to change file UID and GID

(s) J Amount of randomness

(t) H Reference to free()d memory

A. ACL B. capability C. CFG D. chmod E. chown F. crypt G. DEP
H. dangling pointer I. %eax J. entropy K. %esp L. %gs:0x14 M. JIT spray
N. NX O. precondition P. privilege Q. Pwnium R. ROP S. relocation T. user
mode

Page 2

Computer Science 5271 Midterm exam (solutions) - Page 3 of 8 October 19th, 2015

2. (36 points) Multiple choice. Each question has only one correct answer: circle its letter.

(a) Which of these defense techniques would completely prevent a ROP attack from returning
from an intended return instruction to an unintended gadget?

A. ASLR

B. A non-executable stack

C. Adjacent stack canaries

D. A shadow stack

E. A and C, but only if used together

A shadow stack ensures that each (compiler-intended) return targets only the site of the
corresponding call. ROP is not affected by the stack being non-executable, because it exe-
cutes only bytes from the code section. ASLR and adjacent canaries would both make ROP
or entering ROP code more difficult, but even together they are not a complete defense.

(b) What two methods are mentioned in the StackGuard paper to prevent canary forgery?

A. “terminator canary” and “random canary”

B. “StackGhost” and “random XOR canary”

C. “stack layout randomization” and “entropy canary”

D. “StackGhost” and “PointGuard”

E. “Keccak” and “Rijndael”

StackGhost is a real name of a system, but not one we’ve discussed. Stack layout random-
ization would also make it harder to exploit buffer overflows, but it’s not related to canary
forgery want was not proposed in the StackGuard paper. Keccak and Rijndael are crypto
primitives, now better known as SHA-3 and AES respectively.

(c) Which of the following functions found in the C library could not be used as a dispatcher
function in control-flow bending?

A. fputs B. getenv C. printf D. strcat E. memcpy

As mentioned in the control-flow bending paper, the other functions can all have their
arguments chosen so that they write an attacker-controlled value to a memory location.
By contrast getenv simply returns a pointer to a pre-existing memory area without writing
anywhere.

(d) Suppose we are using a MLS system with levels unclassified < classified < secret, and
enforcing a high-watermark policy. If a program has read classified data, what level(s) can
it write to afterwards?

A. Classified, only

B. Unclassified, only

C. Classified and all levels below classified

D. Classified and all levels above classified

This is the “no write down” part of the policy.

(e) If the login process requires both “something you have” and “something you know”, it is
using a model called:

A. Hash-and-salt mechanism

B. Two-factor authentication

C. Microsoft Passport

Page 3

Computer Science 5271 Midterm exam (solutions) - Page 4 of 8 October 19th, 2015

D. Two-channel authentication

E. Biometric authentication

We never discussed anything called two-channel authentication; some researchers use that
phrase to refer to challenge-response authentication using both a PC and a mobile phone.
The other wrong answers are unrelated concepts in authentication.

(f) To prevent a directory traversal attack, ensure that untrusted file paths do not contain:

A. /etc/passwd B. ./././ C. /////etc D. /etc/sudoers.d E. ../

Any of these strings might appear in an attack, but the essence of directory traversal is
escaping from an intended directory, so .. is the only component that would be effective
to blacklist.

(g) Which of these could be a reason why control-flow integrity has been slow to be widely
deployed?

A. The original CFI technique did not allow for CFI-protected code to
call non-CFI-protected libraries.

B. The original CFI techniques only worked for RISC architectures.

C. CFI was first invented at Microsoft, so it doesn’t work on Unix.

D. CFI requires a shadow stack, which is incompatible with C++ virtual methods.

E. Even when implemented in an optimizing compiler, CFI more than doubles
memory usage.

The first SFI techniques worked only for RISC, but the initial CFI paper was for x86.
Some of the inventors worked for Microsoft, but many later systems have provided CFI
protection on Unix. CFI can be used together with a shadow stack, but doesn’t require it,
and there is no incompatibility between a shadow stack and virtual methods. CFI checks
can increase the size of a program’s code, but usually by much less than a factor of two,
especially when implemented in a compiler.

(h) The database that tells which students are in which group for hands-on assignment 1 is
stored in a file on the CSE Labs machines:

% ls -l groups.db

?????????? 1 nishad student 727 Sep 29 15:51 groups.db

The file should be able to be edited by the TA Nishad, scripts running as students (in group
student) should be able to do lookups, and the professor (not in group student) should be
able to check it. But students should not be allowed to change the database themselves.
Which of these would be an appropriate permissions mode for the file (replacing the
question marks)?

A. 04755, -rwsr-xr-x

B. 00644, -rw-r--r--

C. 00664, -rw-rw-r--

D. 00777, -rwxrwxrwx

E. 00640, -rw-r-----

Other-read should be enabled for the professor, group-write should be disabled because of
the students, and no execution or set-uid bits make sense for a database.

(i) A lattice is a good mathematical model for permissions in a multi-level secure system with
compartments because it has all of the following properties except:

Page 4

Computer Science 5271 Midterm exam (solutions) - Page 5 of 8 October 19th, 2015

A. Reflexive, so that everyone can share information with themselves

B. Least-upper bound, to compute the permissions when data values are combined

C. Total order, so that every pair of subjects can communicate in one
direction or the other

D. Transitive, so that information that can flow via a third party can also flow
directly

E. Antisymmetric, since if two subjects can share information in both directions
they can be treated as equivalent

It is because lattices are not totally ordered that are a good model in the presence of multiple
compartments.

(j) In an x86 format-string attack, the address that a %n specifier will write to needs to be
stored in the:

A. data section B. kernel C. heap D. text section E. stack

The function’s arguments are on the stack, so %n can only overwrite stack locations.

(k) The Joe-E language builds an object-capability access control system on top of the object
system of Java. C++’s object system is similar to Java’s in some ways, but a similar
design based on C++ would be insecure because of this C/C++ feature:

A. unsigned integers

B. int-to-pointer casts

C. goto

D. pointer-to-int casts

E. setjmp/longjmp

The ability to cast integers into pointers allows a C/C++ program to forge a pointer to an
arbitrary object if the program can guess its address. The other features are also missing
in Java, but don’t present a similar danger.

(l) Five research projects in biometric authentication produced systems with the following
empirical results. Which system is worthy of future research?

A. 50% true positive rate, 50% false positive rate

B. 0% false positive rate, 100% false negative rate

C. 90% true positive rate, 10% true negative rate

D. 100% true positive rate, 100% false positive rate

E. 5% true positive rate, 95% false positive rate

Systems A-D all lie on the line of random guessing, so they could just be reimplemented
with nothing more than a random number generator. E’s performance is even worse, far
below that line, but this means that if you just swapped its accept and reject answers you’d
get a reasonable system: that would be worth more investigation.

Page 5

Computer Science 5271 Midterm exam (solutions) - Page 6 of 8 October 19th, 2015

3. (24 points) Avoiding buffer overflows with invariants. Below are two implementations that use
loops to convert a string into a version with non-printable characters replaced by backslash
escapes like \x7f. In each one, we’ve left out parts of the code, and/or invariant properties
related to avoiding overflowing the output buffer. Fill in the blanks so the code works correctly.
The invariants should be mathematical properties that are true, and explain why the buffer
accesses to out can’t overflow (you may use either C-style or math-style notation). For some
blanks we’ve given suggestions about what variables to use.

The functions all have the same specification: to translate a null-terminated string s (0 to
10000 bytes long) into a version that uses C backslash escapes. The return value is dynamically
allocated and the caller should free it. The functions return a null pointer if allocation fails.
The definition of the escape char function, which escapes a single character, is on the next
page.

(a) Approach 1: using realloc. Recall that realloc is a function that changes the size of a
malloc-allocated buffer.

char *escape1(const char *s) {

int i;

int j = 0;

size_t out_size = strlen(s) + 1;

char *out = malloc(out_size);

if (!out)

return 0;

for (i = 0; s[i] != ’\0’; i++) {

if (j > out_size - 5) {

out_size += 5;

out = realloc(out, out_size);

if (!out)

return 0;

}

/* Invariant property: out_size is the size of the buffer

pointed to by "out" */

/* Invariant: j <= out_size - 5

(relating j and out_size) */

escape_char(s[i], out, &j);

}

out[j++] = ’\0’;

return out;

}

Page 6

Computer Science 5271 Midterm exam (solutions) - Page 7 of 8 October 19th, 2015

(b) Approach 2: conservative allocation.

char *escape2(const char *s) {

int i;

int j;

char *out;

out = malloc(4 * strlen(s) + 1);

/* (use strlen(s)) */

j = 0;

if (!out)

return 0;

for (i = 0; s[i] != ’\0’; i++) {

/* Invariant: j <= 4 * i

(relating i and j) */

escape_char(s[i], out, &j);

}

out[j++] = ’\0’;

return out;

}

The following helper functions are used by both implementations:

/* Convert an int 0 <= i <= 15 into an ASCII hex digit: 0-9 or a-f */

char hex_digit(int i) {

if (i < 10) { return ’0’ + i; }

else { return ’a’ + (i - 10); }

}

/* Write an escaped version of character C into the buffer OUT, using

and updating index *J. Increments *j by between 1 and 4. */

void escape_char(unsigned char c, char *out, int *j) {

if (c == ’\n’) {

out[(*j)++] = ’\\’; out[(*j)++] = ’n’;

} else if (c == ’\\’) {

out[(*j)++] = ’\\’; out[(*j)++] = ’\\’;

} else if (c >= ’ ’ && c <= ’~’) {

out[(*j)++] = c;

} else {

out[(*j)++] = ’\\’; out[(*j)++] = ’x’;

out[(*j)++] = hex_digit(c >> 4);

out[(*j)++] = hex_digit(c & 0xf);

}

}

Page 7

Computer Science 5271 Midterm exam (solutions) - Page 8 of 8 October 19th, 2015

4. (20 points) Attack, defense, and counter-attack. Low-level software security has seen a lot
mutual evolution of attacker and defender techniques. This question traces this back-and-forth
influence. Here are some examples of attacker and defender techniques:

Attacker techniques Defender techniques

A. shellcode in environment variable
B. return address overwrite J. W ⊕ X
C. directory traversal K. stack canary
D. pointer disclosure L. shadow stack
E. return-oriented programming M. ASLR
F. heap spray N. path sanitization
G. non-control data overwrite O. control-flow integrity
H. return to libc
I. call-preceded ROP

Using the pairs of blanks below, in the left column give five examples of an attack leading
to defense that block the attack. Then in the right column give five examples of a defense
leading to a counter-attacks that circumvents the defense. Fill in the blanks with the letters
of techniques in the table above. Order is important: the technique on the left of the arrow is
the one that came first, and the one on the right is the reaction from the opposing side. More
than ten such linkages are possible, so choose ones where the relationship is clearest and most
direct, and you don’t have to use all the techniques. But you will want to use some techniques
more than once.

Attack (A-I) → defense (J-O)

A → J

A → M

A → O

C → N

H → O

Defense (J-O) → counter-attack (A-I)

J → E

M → F

M → D

O → G

O → I

Here’s a non-exhaustive list of other answers that were also worth full credit. Attack to defense:
B → K, B → L, E → O, E → L, H → M . Defense to counter-attack: J → H, K → G,
L→ G.

Page 8

